精英家教网 > 高中数学 > 题目详情
已知f(x)是偶函数,对任意的a,b∈[0,+∞)都有
f(a)-f(b)
a-b
<0
,若f(lgx)>f(1),则x的取值范围是(  )
A、、(
1
10
,1)
B、(0,
1
10
)∪(1,+∞)
C、(
1
10
,10)
D、(0,1)∪(10,+∞x1x2=1
考点:奇偶性与单调性的综合
专题:计算题,函数的性质及应用,不等式的解法及应用
分析:由于f(x)是偶函数,对任意的a,b∈[0,+∞)都有
f(a)-f(b)
a-b
<0
,则偶函数f(x)在[0,+∞)递减,
f(lgx)>f(1),即为f(|lgx|)>f(1),由单调性,即可得到,再解不等式即可得到解集.
解答: 解:由于f(x)是偶函数,
对任意的a,b∈[0,+∞)都有
f(a)-f(b)
a-b
<0

则偶函数f(x)在[0,+∞)递减,
则f(lgx)>f(1),即为
f(|lgx|)>f(1),
即有|lgx|<1,即-1<lgx<1,
1
10
<x<10.
故选C.
点评:本题考查函数的奇偶性和单调性的运用:解不等式,考查对数不等式的解法,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中正确的是(  )
A、若a>b,则ac>bc
B、若a>b,c>d,则a-c>b-d
C、若ab>0,a>b,则
1
a
1
b
D、若c>b,a>d,则
a
c
b
d

查看答案和解析>>

科目:高中数学 来源: 题型:

满足tan(4x-
π
4
)=1
的锐角x的集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).若|
a
|=
3
,且
a
分别与
AB
AC
垂直,求向量
a

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l:ax+y+1=0平分圆x2+y2-2x+6y+5=0的面积,则直线l的倾斜角为
 
.(用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x=
π
2
,x=
π
3
都是函数f(x)=sin(ωx+φ)(ω>0,-π<φ≤π)的对称轴,且函数f(x)在区间[
π
3
π
2
]
上单调递减,则φ=(  )
A、-
π
3
B、
π
3
C、-
π
2
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是{x|x∈R,x≠
k
2
,2∈Z}
,且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,当0<x<
1
2
时,f(x)=3x
(1)判断f(x)的奇偶性;(2)求f(x)在区间(
1
2
,1)
上的解析式;
(3)是否存在正整数k,使得当x∈(2k+
1
2
,2k+1)
时,不等式log3f(x)>x2-k-1有解?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的定点B,C的坐标分别为(-4,0),(4,0),AC、AB边上的中线长之和为15,则△ABC的重心G的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校甲、乙、丙、丁4名同学随机分配到A,B,C三个社区进行社会实践,要求每个社区至少有一名同学参加,则有
 
种分配方法.

查看答案和解析>>

同步练习册答案