精英家教网 > 高中数学 > 题目详情
12.定义一个对应法则g:O′(m,n)→O($\sqrt{m}$,n)(m≥0),现有点A′(1,-3)与B′(9,5),点M′是线段A′B′上一动点,按定义的对应法则g:M′→M,当点M′在线段A′B′上从点的A′开始运动到点B′结束时,则点M′的对应点M所形成的轨迹与x轴围成的面积为4.

分析 先求M的轨迹,要根据点M与点M′的关系用代入法点M的轨迹方程,此方法特点是先设出点M'的坐标为(x,y),用之表示出点P的坐标,代入点M的坐标满足的方程,得到点M'的横纵坐标之间的关系,即轨迹为M,再由定积分其面积.

解答 解:A′B′的斜率k=$\frac{-3-5}{1-9}=\frac{8}{8}=1$,
直线l为A′B′:y+3=x-1,则y=x-4,且1≤x≤9
A′B′上的一点(x,y)通过法则变(x′,y′),
则y′=y,x′=$\sqrt{x}$,
故x=x′2,y′=x′2-4,1≤x′≤3
所求面积S=∫${\;}_{1}^{2}$(4-x2)dx+${∫}_{2}^{3}$(x2-4)dx=(4x-$\frac{1}{3}{x}^{3}$)|${\;}_{1}^{2}$+($\frac{1}{3}{x}^{3}$-4x)|${\;}_{2}^{3}$=4

点评 本题考查代入法求轨迹方程,根据对应法则求出对应关系是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设$\frac{3}{2}$π<α<2π,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=(  )
A.-cos$\frac{α}{2}$B.cos$\frac{α}{2}$C.sin$\frac{α}{2}$D.-sin$\frac{α}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于下列命题:①若sinθ-cosθ=$\frac{1}{2}$,则sin2θ=$\frac{3}{4}$;②函数y=cos2($\frac{π}{4}$-x)是偶函数;③函数y=sin(x+$\frac{π}{4}$)在闭区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数;④函数y=4sin(2x-$\frac{π}{3}$)的一个对称中心是($\frac{π}{6}$,0).写出所有正确命题的序号①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要证明$\sqrt{3}$+$\sqrt{7}$<2+$\sqrt{6}$所选择的方法有以下几种,其中合理的是(  )
A.综合法B.分析法C.类比法D.归纳法

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.x为实数,[x]表示不超过x的最大整数,如[1.3]=1,[-1.3]=-2.若函数f(x)=sinx-[sinx],则下列结论中:
①函数f(x)是最小正周期为2π的周期函数;
②函数f(x)在[0,$\frac{π}{2}$)上递增,在($\frac{π}{2}$,π]上递减;
③函数f(x)为奇函数;
④函数f(x)的值域为[0,1].
其中正确的结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,若(2a-c)tanC=ctanB,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.销售甲,乙两种商品所得到利润与投入资金x(万元)的关系分别为f(x)=m$\sqrt{x+1}+a$,g(x)=bx(其中m,a,b∈R),函数f(x),g(x)对应的曲线C1,C2,如图所示.
(1)求函数f(x)与g(x)的解析式;
(2)若该商场一共投资4万元经销甲,乙两种商品,求该商场所获利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,A、B、C所对的边分别是a、b、c,若$\overrightarrow{m}$=(b,3a),$\overrightarrow{n}$=(c,b),且$\overrightarrow{m}$∥$\overrightarrow{n}$,C-A=$\frac{π}{2}$,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在锐角△ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知2csinA=$\sqrt{3}$a,sin(B-A)=cosC.
(1)求∠A、∠B、∠C;
(2)若△ABC的面积为3+$\sqrt{3}$,求a、c的值.

查看答案和解析>>

同步练习册答案