精英家教网 > 高中数学 > 题目详情
11.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点F与抛物线y2=2px(p>0)的焦点重合,且在第一象限的交点为M,MF直于x轴,则双曲线的离心率是(  )
A.2$\sqrt{2}$+2B.2$\sqrt{2}$C.$\sqrt{2}$+1D.$\sqrt{2}$+2

分析 根据抛物线的方程算出其焦点为F($\frac{p}{2}$,0),得到|MF|=p.设双曲线的另一个焦点为F',由双曲线的右焦点为F算出双曲线的焦距|FF'|=p,△TFF'中利用勾股定理算出|MF'|=$\sqrt{2}$p,再由双曲线的定义算出2a=($\sqrt{2}$-1)p,利用双曲线的离心率公式加以计算,可得答案.

解答 解:抛物线y2=2px的焦点为F($\frac{p}{2}$,0),
由MF与x轴垂直,令x=$\frac{p}{2}$,可得|MF|=p,
双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的实半轴为a,半焦距c,另一个焦点为F',
由抛物线y2=2px的焦点F与双曲线的右焦点重合,
即c=$\frac{p}{2}$,可得双曲线的焦距|FF'|=2c=p,
由于△MFF'为直角三角形,则|MF'|=$\sqrt{2}$p,
根据双曲线的定义,得2a=|MF'|-|MF|=$\sqrt{2}$p-p,可得a=$\frac{\sqrt{2}-1}{2}$p.
因此,该双曲线的离心率e=$\frac{c}{a}$=$\sqrt{2}$+1.
故选:C.

点评 本题给出共焦点的双曲线与抛物线,在它们的交点在x轴上射影恰好为抛物线的焦点时,求双曲线的离心率.着重考查了抛物线和双曲线的定义与标准方程、简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.三角形ABC中,cosBcosC=1-sinBsinC,三角形ABC的形状为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{sin2x}{cosx}$的最小正周期是2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题正确的是(  )
A.在三角形ABC中,sinA>sinB,则边a>b
B.若对任意正整数n,有a2n+1=an•an+2,则数列{an}为等比数列
C.向量数量积$\overrightarrow{a}$•$\overrightarrow{b}$<0,则$\overrightarrow{a}$,$\overrightarrow{b}$夹角为钝角
D.x0为函数y=f(x)的极值点的充要条件是f′(x0)=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|3x+2|-|2x+a|
(I)若f(x)≥0对x∈R恒成立,求实数a的取值范围;
(Ⅱ)若f(x)≤0在x∈[1,2]有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设集合A={x|y=$\sqrt{lo{g}_{0.5}\frac{x+1}{4}}$,B={y|y=($\frac{1}{2}$)x,且x≤-1}
(Ⅰ)求集合C={x|x∈A∪B,且x∉A∩B};
(Ⅱ)设集合D={x|2-a<x<3a},满足B∪D=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,若a=$\sqrt{3}$,A=$\frac{π}{3}$,则b+c的取值范围是(3,2$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若${a}^{\frac{1}{2}}$-${a}^{-\frac{1}{2}}$=3,且${a}^{\frac{3}{2}}$+${a}^{-\frac{3}{2}}$=k(${a}^{\frac{1}{2}}$+${a}^{-\frac{1}{2}}$),则实数k的值为(  )
A.10B.8C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{8}$=1,定点M(1,0),直线l经过点(0,1),斜率为t,与曲线C交于不同的两点A、B,设AB的中点为P,求直线MP的斜率k关于t的函数关系k=f(t).

查看答案和解析>>

同步练习册答案