精英家教网 > 高中数学 > 题目详情
9.设直线y=2x+k与抛物线y2=4x相交于A,B两点.
(1)当|AB|=3$\sqrt{5}$时,求k的值;
(2)设点P是x轴上一点,当△PAB的面积为9时,求点P的坐标.

分析 (1)直线方程与抛物线方程联立,利用韦达定理,可求|AB|,即可得到结论;
(2)求出P到AB的距离,利用△PAB的面积为9,建立方程,即可求点P的坐标.

解答 解:(1)设A(x1,y1)、B(x2,y2),
由抛物线y2=4x与直线y=2x+b,可得4x2+4(k-1)x+k2=0,
△=16(k-1)2-16k2>0,
∴k<$\frac{1}{2}$.
又由韦达定理有x1+x2=1-k,x1x2=$\frac{{k}^{2}}{4}$,
∴|AB|=$\sqrt{1+4}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{5(1-2k)}$=3$\sqrt{5}$,
∴k=-4;
(2)设x轴上点P(x,0),P到AB的距离为d,
则d=$\frac{|2x-0-4|}{\sqrt{5}}$=$\frac{|2x-4|}{\sqrt{5}}$,
∴S△PBA=$\frac{1}{2}$•3$\sqrt{5}$•$\frac{|2x-4|}{\sqrt{5}}$=9,
∴|2x-4|=6,
∴x=5或x=-1,
∴P(5,0)或(-1,0).

点评 本题考查直线与抛物线的位置关系,弦长的计算,考查三角形面积公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某学校为挑选参加地区汉字听写大赛的学生代表,从全校报名的1200人中筛选出300人参加听写比赛,然后按听写比赛成绩择优选取75人再参加诵读比赛.
(1)从参加听写比赛的学生中随机抽取了24名学生的比赛成绩整理成表:
分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)[90,95]
1269411
请你根据该样本数据估计进入诵读比赛的分数线大约是多少?
(2)若学校决定,从诵读比赛的女生的前4名a,b,c,d和男生的前两名e,f中挑选两名学生作为代表队队长,请你求出队长恰好为一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.曲线y=-$\frac{1}{2}$x+lnx的切线是直线y=$\frac{1}{2}$x+b,则b的值为(  )
A.-2B.-1C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=a(x-1)(ex-a)(常数a∈R且a≠0).
(Ⅰ)证明:当a>0时,函数f(x)有且只有一个极值点;
(Ⅱ)若函数f(x)存在两个极值点x1,x2,证明:0<f(x1)<$\frac{4}{{e}^{2}}$且0<f(x2)<$\frac{4}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,如果acosB+acosC=b+c.试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z1≠-1,且$\frac{{z}_{1}-1}{{z}_{1}+1}$=bi(b∈R,b≠0),z=$\frac{4}{{(z}_{1}+1)^2}$,复数z在复平面内所对应的点为P.
(1)若点P在第二象限,求实数b的取值范围;
(2)求点P所形成的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC中,A、B、C分别是三个内角,a、b、c分别是角A、B、C所对的边,且a=$\sqrt{3}$,A=$\frac{π}{3}$.
(1)求△ABC的周长的最大值.
(2)求△ABC面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设定义在(0,+∞)上的单调函数f(x)对任意的x∈(0,+∞)都有f(f(x)-log2x)=6,则不等式f(x)>3的解集为(  )
A.{x|x>1}B.{x|x>$\frac{1}{2}$}C.{x|0<x<1}D.{x|0<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若△ABC的两个顶点B,C的坐标分别是(-1,0)和(2,0),而顶点A在直线y=x上移动,则△ABC的重心G的轨迹方程是3x-3y-1=0(y≠0).

查看答案和解析>>

同步练习册答案