精英家教网 > 高中数学 > 题目详情
函数f(x),g(x)由下列表格给出,则f(g(3))=(  )
x 1 2 3 4
f(x) 2 4 3 1
g(x) 3 1 2 4
A、4B、3C、2D、1
考点:函数的值
专题:函数的性质及应用
分析:通过表格求出g(3)的值,然后求解f(g(3))的值.
解答: 解:由表格可知,g(3)=2,
∴f(g(3))=f(2)=4.
故选:A.
点评:本题考查函数值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+sinx.项数为19的等差数列{an}满足an(-
π
2
π
2
)
,且公差d≠0.若f(a1)+f(a2)+…+f(a18)+f(a19)=0,则当k=
 
时,f(ak)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,已知S7=28,S8=36,则S15=(  )
A、210B、120
C、64D、56

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=1,BC=2,
BA
BC
=
3
,则角B=(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(1,2),
b
=(-3,m),
a
b
,则m=(  )
A、
3
2
B、-
3
2
C、6
D、-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为-1,且a2+a7+a12=-6,
(1)求数列{an}的通项公式an与前n项和Sn
(2)若{bn}是首项为4,公比为
1
2
的等比数列,前n项和为Tn,求证:当t>6时,对任意n,m∈N*,Sn<Tm+t恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(
12
,2)在函数f(x)=2sin(ωx+φ)(ω>0,0<|φ|<
π
2
)的图象上,直线x=x1、x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为
π
2

(1)求函数f(x)的单递增区间和其图象的对称中心坐标;
(2)设A={x|
π
4
≤x≤
π
2
},B={x||f(x)-m|<1},若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(
3
sin2x-1,cosx),
n
=(
1
2
,cosx),设函数f(x)=
m
n
.求函数f(x)的最小正周期及在[0,
π
2
]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设θ为第三象限角,试判断cos
θ
3
的符号.

查看答案和解析>>

同步练习册答案