精英家教网 > 高中数学 > 题目详情
9.求下列各式的值
(1)(0.25)-1+($\frac{8}{27}$)${\;}^{\frac{1}{3}}$-($\frac{1}{16}$)-0.75+lg25+lg4+7${\;}^{lo{g}_{7}2}$.
(2)(log43+log83)(log32+log92)-log${\;}_{\frac{1}{2}}$$\root{4}{32}$.

分析 (1)根据分数指数幂,对数的运算法则计算即可;
(2)根据对数的运算法则计算即可;

解答 解:(0.25)-1+($\frac{8}{27}$)${\;}^{\frac{1}{3}}$-($\frac{1}{16}$)-0.75+lg25+lg4+7${\;}^{lo{g}_{7}2}$.
原式=$(\frac{1}{4})^{-1}$$+(\frac{{2}^{3}}{{3}^{3}})^{\frac{1}{3}}$$-(\frac{1}{{2}^{4}})^{-\frac{3}{4}}+lg(25×4)+2$
=4+$\frac{2}{3}$-8+4
=$\frac{2}{3}$;
(log43+log83)(log32+log92)-log${\;}_{\frac{1}{2}}$$\root{4}{32}$.
原式=($\frac{1}{2}$log23+$\frac{1}{3}$log23)(log32+$\frac{1}{2}$log32)-$lo{g}_{{2}^{-1}}3{2}^{\frac{1}{4}}$
=$\frac{5}{6}$log23×$\frac{3}{2}$log32+$\frac{5}{4}$
=$\frac{5}{2}$.

点评 本题考查了分数指数幂,对数的运算法基本运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在△ABC中tanA+tanB=1-tanAtanB则∠A+∠B等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$tanα=\frac{1}{2}$,则$\frac{sinαcosα}{{{{sin}^2}α-co{s^2}α}}$的值是(  )
A.$-\frac{4}{3}$B.3C.$\frac{4}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx+$\frac{2{a}^{2}}{x}$+x.
(1)讨论函数f(x)的单调性;
(2)若f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a=(cos{66°},sin{6°}),\overrightarrow b=(cos{6°},sin{66°}),则\overrightarrow a•\overrightarrow b$等于(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知锐角△ABC的外接圆半径为$\frac{{\sqrt{2}}}{2}$BC,且AB=2$\sqrt{2}$,AC=3,则BC=(  )
A.$\sqrt{29}$B.$\sqrt{5}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.角-870°的终边所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$,则z=2x-y的最小值等于-$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点Q(-$\frac{6}{5}$,$\frac{13}{5}$)关于直线y=2x+1的对称点是P,焦点在x轴上的椭圆经过点P,且离心率为$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足$\overrightarrow{OM}$=$\overrightarrow{NO}$,直线PM、PN分别交椭圆于A,B.探求直线AB是否过定点,如果经过请求出定点的坐标,如果不经过定点,请说明理由.

查看答案和解析>>

同步练习册答案