精英家教网 > 高中数学 > 题目详情
1.已知正角α的终边上一点的坐标为($sin\frac{2π}{3},cos\frac{2π}{3}$),则角α的最小值为$\frac{11π}{6}$.

分析 由题意可得角α为第四象限角,且tanα=-$\frac{\sqrt{3}}{3}$,由此可得角α的最小值.

解答 解:正角α的终边上一点的坐标为($sin\frac{2π}{3},cos\frac{2π}{3}$),即($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$),
则角α为第四象限角,且tanα=$\frac{y}{x}$=$\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=-$\frac{\sqrt{3}}{3}$,∴角α的最小值为2π-$\frac{π}{6}$=$\frac{11π}{6}$,
故答案为:$\frac{11π}{6}$.

点评 本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.30岁以后,随着年龄的增长,人们的身体机能在逐渐退化,所以打针 买保健品这样的“健康消费”会越来越多,现对某地区不同年龄段的一些人进行了调查,得到其一年内平均“健康消费”如表:
年龄(岁)3035404550
健康消费(百元)58101418
(1)求“健康消费”y关于年龄x的线性回归方程;
(2)由(1)所得方程,估计该地区的人在60岁时的平均“健康消费”.
(附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设实数x,y满足不等式组$\left\{\begin{array}{l}x+2y-5≥0\\ 2x+y-4≤0\\ x-y+3≥0\end{array}\right.$,则x+y的最小值是(  )
A.3B.-3C.$\frac{7}{3}$D.-$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,长为2$\sqrt{3}$,宽为$\frac{1}{2}$的矩形ABCD,以A、B为焦点的椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1恰好过C、D两点.
(1)求椭圆M的标准方程
(2)若直线l:y=kx+3与椭圆M相交于P、Q两点,求S△POQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数f(x)满足f(x+1)-f(x)=2x-1,且f(0)=3.
(1)求f(x)的解析式;
(2)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)=$\left\{\begin{array}{l}{{a}^{x},(x<1)}\\{(a-3)x+4a,(x≥1)}\end{array}\right.$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则a的取值范围是0<a≤$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={0,1,2,3,4},N={2,4,6},P=M∩N,则P的子集有(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点P为不等式组$\left\{\begin{array}{l}x-2y+1≥0\\ x≤2\\ x+y-1≥0\end{array}\right.$所表示的平面区域内的一点,点Q是M:(x+1)2+y2=1上的一个动点,则当∠MPQ最大时,|PQ|=(  )
A.1B.$\sqrt{2}$C.$\frac{{\sqrt{11}}}{3}$D.$\frac{{2\sqrt{5}}}{3}$

查看答案和解析>>

同步练习册答案