精英家教网 > 高中数学 > 题目详情
16.如图,长为2$\sqrt{3}$,宽为$\frac{1}{2}$的矩形ABCD,以A、B为焦点的椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1恰好过C、D两点.
(1)求椭圆M的标准方程
(2)若直线l:y=kx+3与椭圆M相交于P、Q两点,求S△POQ的最大值.

分析 (1)设B(c,0),推出C(c,$\frac{b^2}{a}$)利用已知条件列出方程组即可求解M的方程.
(2)将l:y=kx+3代入 $\frac{{x}^{2}}{4}$+y2=1,利用韦达定理以及弦长公式,点到平面的距离的距离,表示三角形的面积,利用基本不等式求解即可.

解答 (1)设B(c,0),由条件知,C(c,$\frac{b^2}{a}$).(1分)
∴$\left\{\begin{array}{l}\frac{b^2}{a}=\frac{1}{2}\\ c=\sqrt{3}\\{a^2}={b^2}+{c^2}\end{array}\right.$,解得a=2,b=(3分)
故M的方程为 $\frac{{x}^{2}}{4}$+y2=1.(4分)
(2)将l:y=kx+3代入 $\frac{{x}^{2}}{4}$+y2=1
(1+4k2)x2+24kx+32=0.(5分)
当△=64(k2-2)>0,即k2>2时,(6分)
从而|PQ|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+{k^2}}•\frac{{\sqrt{64({k^2}-2)}}}{{4{k^2}+1}}$.(7分)
又点O到直线PQ的距离d=$\frac{3}{{\sqrt{{k^2}+1}}}$,(8分)
所以△POQ的面积S△OPQ=$\frac{1}{2}$d|PQ|=$\frac{{12\sqrt{{k^2}-2}}}{{4{k^2}+1}}$.(9分)
设$\sqrt{{k^2}-2}$=t,则t>0,S△OPQ=$\frac{12t}{{4{t^2}+9}}=\frac{12}{{4t+\frac{9}{t}}}≤\frac{12}{{2\sqrt{4t•\frac{9}{t}}}}=1$.
当且仅当t=$\frac{3}{2}$时等号成立,且满足△>0,
所以,△POQ的面积最大值为1(12分)

点评 本题考查直线与椭圆的位置关系的应用,基本不等式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|(x+1)(x-2)>0},B={x∈Z|x2-9≤0},则A∩B=(  )
A.{0,1}B.(0,1)C.[-3,-1)∪(2,3]D.{-3,-2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆x2+y2=1与直线xsinθ+y-1=0的位置关系为(  )
A.相交B.相切C.相离D.相切或相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合$A=\left\{{x\left|{\frac{x-1}{x+3}>0}\right.}\right\}$,$B=\left\{{y\left|{y=\sqrt{4-{x^2}}}\right.}\right\}$,则A∪B=(  )
A.(-∞,-3)∪(1,+∞)B.(-∞,-3)∪(1,2]C.(-∞,-3)∪[0,+∞)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列{an}的前n项和Sn=n2-5n(n∈N*),若p-q=4,则ap-aq=(  )
A.20B.16C.12D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正角α的终边上一点的坐标为($sin\frac{2π}{3},cos\frac{2π}{3}$),则角α的最小值为$\frac{11π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=$\sqrt{a•{9}^{x}+{3}^{x}+1}$的定义域为(-∞,1],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C:(x+1)2+(y-2)2=25和点P(2,1)
(I)判断点P和圆的位置关系;
(II)过P的直线被圆C截得的弦长为8,求该直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某公司为确定2017年度投入某种产品的宣传费,需了解年宣传费x(单位:万元)对年销售收益y(单位:万元)的影响,2016年在若干地区各投入4万元的宣传费,并将各地的销售收益的数据作了初步处理,得到下面的频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度,并估计对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅱ)该公司按照类似的研究方法,测得一组数据如表所示:
宣传费x(单位:万元)32154
销售收益y(单位:万元)23275
表中的数据显示,y与x之间存在线性相关关系,求y关于x的回归直线方程;
(Ⅲ)由(Ⅱ)知,当宣传费投入为10万元时,销售收益大约为多少万元?
附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案