精英家教网 > 高中数学 > 题目详情
7.圆x2+y2=1与直线xsinθ+y-1=0的位置关系为(  )
A.相交B.相切C.相离D.相切或相交

分析 求出圆心坐标和半径r,求出直线系经过的定点,判断定点与圆的位置关系,可得出直线与圆位置关系.

解答 解:由圆的标准方程:x2+y2=1,
∴圆心坐标为(0,0),半径r=1,
∵直线xsinα+y-1=0,恒过(0,1),而(0,1)是圆周上的点.
∴直线与圆的位置关系是相交或相切.
故选D.

点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,以及正弦函数的值域,直线与圆的位置关系由d与r的大小关系确定(d表示圆心到直线的距离,r表示圆的半径),当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.本题是直线系与圆的位置关系,转化为点与圆的位置关系判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ax4-bx2+c-1,a,b,c∈R,若f(2)=-1,则f(-2)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于平面α和两条不同的直线m、n,下列命题是真命题的是(  )
A.若m,n与α所成的角相等,则m∥nB.若m∥α,n∥α,则m∥n
C.若m⊥α,m⊥n,则n∥αD.若m⊥α,n⊥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设等比数列{an}的公比为q,前n项和为Sn,且a1>0,若S2>2a3,则q的取值范围是(  )
A.$(-1,0)∪(0,\frac{1}{2})$B.$(-\frac{1}{2},0)∪(0,1)$C.$(-1,\frac{1}{2})$D.$(-\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,AB=BC=3,∠BAC=30°,CD是AB边上的高,则$\overrightarrow{CD}•\overrightarrow{CB}$=(  )
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$\frac{27}{4}$D.$-\frac{27}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.30岁以后,随着年龄的增长,人们的身体机能在逐渐退化,所以打针 买保健品这样的“健康消费”会越来越多,现对某地区不同年龄段的一些人进行了调查,得到其一年内平均“健康消费”如表:
年龄(岁)3035404550
健康消费(百元)58101418
(1)求“健康消费”y关于年龄x的线性回归方程;
(2)由(1)所得方程,估计该地区的人在60岁时的平均“健康消费”.
(附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1、F2,离心率为$\frac{1}{2}$,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x+$\sqrt{2}$y-3=0相切.
(1)求椭圆C的标准方程;
(2)动直线l;y=kx+m与椭圆C相切,分别过点F1、F2作直线垂直于l,垂足分别为D、E,求|F1D|+|F2E|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,长为2$\sqrt{3}$,宽为$\frac{1}{2}$的矩形ABCD,以A、B为焦点的椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1恰好过C、D两点.
(1)求椭圆M的标准方程
(2)若直线l:y=kx+3与椭圆M相交于P、Q两点,求S△POQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法正确的个数是(  )
(1)若p∧q为假命题,则p,q均为假命题
(2)已知直线α,β,平面α,β,且a⊥α,b?β,则“a⊥b”是“α∥β”的必要不充分条件
(3)命题“若a≥b,则a2≥b2”的逆否命题为“若a2≤b2,则a≤b”
(4)命题“?x0∈(0,+∞),使lnx0=x0-2”的否定是“?x∈(0,+∞),lnx≠x-2”
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案