精英家教网 > 高中数学 > 题目详情
4.已知集合$A=\left\{{x\left|{\frac{x-1}{x+3}>0}\right.}\right\}$,$B=\left\{{y\left|{y=\sqrt{4-{x^2}}}\right.}\right\}$,则A∪B=(  )
A.(-∞,-3)∪(1,+∞)B.(-∞,-3)∪(1,2]C.(-∞,-3)∪[0,+∞)D.(1,2]

分析 由分式不等式的解法求出集合A,由函数的解析式求出函数的值域B,由并集的运算求出A∪B.

解答 解:由$\frac{x-1}{x+3}>0$得(x-1)(x+3)>0,
解得x<-3或x>1,则A=(-∞,-3)∪(1,+∞),
由0≤4-x2≤4得,$B=\{y|y=\sqrt{4-{x}^{2}}\}$=[0,4],
所以A∪B=(-∞,-3)∪[0,+∞),
故选C.

点评 本题考查并集及其运算,分式不等式的解法,以及函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设集合A={x|x2+3x+2=0},B={x|x2+ax+4=0},若B≠Φ,B⊆A,则实数a的取值集合是{4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设等比数列{an}的公比为q,前n项和为Sn,且a1>0,若S2>2a3,则q的取值范围是(  )
A.$(-1,0)∪(0,\frac{1}{2})$B.$(-\frac{1}{2},0)∪(0,1)$C.$(-1,\frac{1}{2})$D.$(-\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.30岁以后,随着年龄的增长,人们的身体机能在逐渐退化,所以打针 买保健品这样的“健康消费”会越来越多,现对某地区不同年龄段的一些人进行了调查,得到其一年内平均“健康消费”如表:
年龄(岁)3035404550
健康消费(百元)58101418
(1)求“健康消费”y关于年龄x的线性回归方程;
(2)由(1)所得方程,估计该地区的人在60岁时的平均“健康消费”.
(附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1、F2,离心率为$\frac{1}{2}$,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x+$\sqrt{2}$y-3=0相切.
(1)求椭圆C的标准方程;
(2)动直线l;y=kx+m与椭圆C相切,分别过点F1、F2作直线垂直于l,垂足分别为D、E,求|F1D|+|F2E|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设实数x,y满足不等式组$\left\{\begin{array}{l}x+2y-5≥0\\ 2x+y-4≤0\\ x-y+3≥0\end{array}\right.$,则x+y的最小值是(  )
A.3B.-3C.$\frac{7}{3}$D.-$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,长为2$\sqrt{3}$,宽为$\frac{1}{2}$的矩形ABCD,以A、B为焦点的椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1恰好过C、D两点.
(1)求椭圆M的标准方程
(2)若直线l:y=kx+3与椭圆M相交于P、Q两点,求S△POQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)=$\left\{\begin{array}{l}{{a}^{x},(x<1)}\\{(a-3)x+4a,(x≥1)}\end{array}\right.$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则a的取值范围是0<a≤$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O为正△ABC内的一点,且满足$\overrightarrow{OA}+λ\overrightarrow{OB}+(1+λ)\overrightarrow{OC}=\overrightarrow 0$,若△OAB的面积与△OBC的面积的比值为3,则λ的值为(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.2D.3

查看答案和解析>>

同步练习册答案