精英家教网 > 高中数学 > 题目详情
已知球的半径为5,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为2
3
,若其中一个圆的半径为4,则另一个圆的半径为
 
考点:球的体积和表面积
专题:空间位置关系与距离
分析:可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.
解答: 解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,
于是OO1=O2E=
OA2-O1A2
=
25-16
=3,
AE=
1
2
AB=
3

∴O2A═
AE2-O2E2
=
3+9
=2
3

∴圆O2的半径为2
3

故答案为:2
3
点评:本题主要考查球的有关概念以及两平面垂直的性质,是对基础知识的考查.解决本题的关键在于得到OO1EO2为矩形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,A1A⊥底面ABC,AC=AB=AA1=4,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;
(Ⅱ)求三棱锥C1-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,A1A⊥面ABC,∠BAC=90°,E为BC的中点,F为A1A的中点,A1A=4,AB=AC=2.
(Ⅰ)求证AE⊥平面 BCC1
(Ⅱ)求证AE∥平面BFC1
(Ⅲ)在棱AA1上是否存在点P,使得二面角B-PC1-C的大小是45°,若存在,求出AP的长.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α截半径为2的球O所得的截面圆的面积为π,则球心O到平面α的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在[-1,1]上的减函数,则不等式f(x)-f(4x+1)>0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若F1,F2是双曲线
x2
4
-y2=1的左,右焦点,点P是该双曲线的顶点,则|PF1|-|PF2|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的各棱长为2,则D1到面AB1C的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x+1
-
x-1
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥O-ABCD中,OA=AB,则OA与底面ABCD所成角的正弦值等于(  )
A、
1
2
B、
3
3
C、
2
2
D、
1
3

查看答案和解析>>

同步练习册答案