精英家教网 > 高中数学 > 题目详情
平面α截半径为2的球O所得的截面圆的面积为π,则球心O到平面α的距离为
 
考点:球内接多面体
专题:计算题,空间位置关系与距离
分析:先求截面圆的半径,然后求出球心到截面的距离.
解答: 解:∵截面圆的面积为π,
∴截面圆的半径是1,
∵球O半径为2,
∴球心到截面的距离为
3

故答案为:
3
点评:本题考查球的体积,点到平面的距离,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:AD⊥PC;
(2)求证:平面AEC⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为平行四边形,AB=1,BC=
2
,∠ABC=45°,点E在PC上,AE⊥PC.
(Ⅰ)证明:AE⊥平面PCD;
(Ⅱ)当PA=
2
时,求直线AD与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-
1
x
的导数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A是圆ρ=2cosθ的圆心,则点A到直线ρcosθ+
3
ρsinθ=7的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)的定义域为R,满足f(x+4)=f(x),若x∈[0,3]时,f(x)=2x-1,则f(-2014)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球的半径为5,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为2
3
,若其中一个圆的半径为4,则另一个圆的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x3-6ax在区间(-2,2)上单调递减,则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,若
2
是2ab的等比中项,则
1
a
+
1
b
的最小值为(  )
A、2B、4C、8D、16

查看答案和解析>>

同步练习册答案