精英家教网 > 高中数学 > 题目详情
设a>0,b>0,若
2
是2ab的等比中项,则
1
a
+
1
b
的最小值为(  )
A、2B、4C、8D、16
考点:基本不等式
专题:不等式的解法及应用
分析:由等比数列可得a+b=1,可得
1
a
+
1
b
=(
1
a
+
1
b
)(a+b)=2+
b
a
+
a
b
,由基本不等式可得.
解答: 解:∵a>0,b>0,若
2
是2ab的等比中项,
∴2a•2b=2a+b=2,即a+b=1,
1
a
+
1
b
=(
1
a
+
1
b
)(a+b)
=2+
b
a
+
a
b
≥2+2
b
a
a
b
=4,
当且仅当
b
a
=
a
b
即a=b=
1
2
时取等号,
1
a
+
1
b
的最小值为:4
故选:B
点评:本题考查基本不等式,涉及等比数列,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面α截半径为2的球O所得的截面圆的面积为π,则球心O到平面α的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x+1
-
x-1
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体是三视图(单位:cm)如图所示,则这个几何体的体积是
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3x-x3的单调递增区间是(  )
A、[-1,1]
B、[1,+∞)∪(-∞,-1]
C、[1,+∞)及(-∞,-1]
D、[-
3
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=x2,则关于x的方程f(x)=(
1
10
)
|x|
在[-2,3]上的根的个数是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥O-ABCD中,OA=AB,则OA与底面ABCD所成角的正弦值等于(  )
A、
1
2
B、
3
3
C、
2
2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知双曲线
x2
a2
-
y2
b2
=1(a>b>0)的右焦点为F,过F的直线l交双曲线的渐近线于A、B两点,且直线l的倾斜角是渐近线OA倾斜角的2倍,若
AF
=2
FB
,则该双曲线的离心率为(  )
A、
3
2
4
B、
2
3
3
C、
30
5
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C1和直线C2的极坐标方程分别为ρ=4cosθ,ρ=
4b
bcosθ+4sinθ
(b∈R).
(1)求圆C1和直线C2的直角坐标方程,并求直线C2被圆C1所截的弦长;
(2)过原点O作直线C2的垂线,垂足为点A,求线段OA的中点M的轨迹的参数方程.

查看答案和解析>>

同步练习册答案