【题目】已如椭圆C:的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.
(1)求椭圆C的标准方程;
(2)设动直线l交椭圆C于P,Q两点,直线OP,OQ的斜率分别为k,k'.若,求证△OPQ的面积为定值,并求此定值.
【答案】(1);(2)△OPQ的面积为定值,且此定值为,见解析
【解析】
(1)根据等腰直角三角形可知,,根据求解椭圆方程;(2)当与轴垂直时,设,代入和椭圆方程,得到面积,当与轴不垂直时,设直线l的方程为,联立方程,得到根与系数的关系,并表示面积,得到面积是定值.
(1)设椭圆C的左、右焦点分别为F1,F2.依题查,有得,则,
所以椭圆C的标准方程为.
(2)证明:①当直线1与x轴垂直时,设直线l的方程为,,.
由,且,解得,或,,所以.
②当直线l与x轴不垂直时,设直线l的方程为,,.
联立直线l和椭圆C的方程,得整理得.
,,.
由,则,即,
所以,
即,整理得,则.
又,
点O到直线PQ的距离为,所以.
综上,△OPQ的面积为定值,且此定值为.
科目:高中数学 来源: 题型:
【题目】已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.
(1)求的方程;
(2)若直线与曲线交于两点,问是否在轴上存在一点,使得当变动时总有?若存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆,点,是圆上任意一点,线段的垂直平分线与半径相交于点,设点的轨迹为曲线。
(1)求曲线的方程;
(2)若,设过点的直线与曲线分别交于点,其中,求证:直线必过轴上的一定点。(其坐标与无关)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln (x+1)- -x,a∈R.
(1)当a>0时,求函数f(x)的单调区间;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,过点的直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为,记直线与曲线分别交于两点.
(1)求曲线和的直角坐标方程;
(2)证明:成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.镇有基层干部60人,镇有基层干部60人,镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,,绘制成如图所示的频率分布直方图.
(1)求这40人中有多少人来自镇,并估计三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)
(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从三镇的所有基层干部中随机选取3人,记这3人中工作出色的人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市自2014年至2019年每年年初统计得到的人口数量如表所示.
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人数(单位:万) | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)设第年的人口数量为(2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;
(2)研究统计人员用函数拟合该城市的人口数量,其中的单位是年.假设2014年初对应,的单位是万.设的反函数为,求的值(精确到0.1),并解释其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是抛物线上任意一点,,且点为线段的中点.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)若为点关于原点的对称点,过的直线交曲线于、 两点,直线交直线于点,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com