精英家教网 > 高中数学 > 题目详情
12.以下表示x轴的参数方程是(  )
A.$\left\{\begin{array}{l}{x={t}^{2}+1}\\{y=0}\end{array}\right.$(t为参数)B.$\left\{\begin{array}{l}{x=0}\\{y=3t+1}\end{array}\right.$(t为参数)
C.$\left\{\begin{array}{l}{x=1+sinθ}\\{y=0}\end{array}\right.$(θ为参数)D.$\left\{\begin{array}{l}{x=4t+1}\\{y=0}\end{array}\right.$(t为参数)

分析 根据x轴上点的坐标特点判断.

解答 解:由于x轴上的点纵坐标为0,排除B,
由于x轴上的点横坐标可以是任意实数,故排除A,C.
故选D.

点评 本题考查了直线的参数方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,三棱柱的侧棱长为2,底面是边长为2的正三角形,AA1⊥面A1B1C1,正视图是边长为2正方形.
(Ⅰ)画出该三棱柱的侧视图,并求其侧视图的面积;
(Ⅱ)求点B1到面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l⊥平面α,垂足是点P,正四面体OABC的棱长为2,点O在平面α上运动,点A在直线l上运动,则点P到直线BC的距离的最大值为$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PD⊥面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求∠ADC;
(2)求证:BC⊥PC;
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在棱长为2的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=$2\sqrt{5}$的点P的个数为12;若满足|PB|+|PD1|=m的点P的个数为6,则m的取值范围是(2$\sqrt{3}$,2$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知F1(-c,0),F2(c,0)分别是椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且|F1F2|=2$\sqrt{3}$,离心率e=$\frac{\sqrt{3}}{2}$.(1)求椭圆M的标准方程;
(2)过椭圆右焦点F2作直线l交椭圆M于A,B两点.
①当直线l的斜率为1时,求线段AB的长;
②若椭圆M上存在点P,使得以OA,OB为邻边的四边形OAPB为平行四边形(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设经过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上的任意两点的连线(该连线不与x轴垂直)的垂直平分线与x轴交点的横坐标为x0,则x0的取值范围是(  )
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-1,1]D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是一个四棱锥的三视图,则该几何体的体积为(  )
A.16B.12C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的左,右焦点分别为F1(-1,0),F2(1,0),点P为椭圆上任意一点,且△PF1F2的内切圆面积的最大值为$\frac{1}{3}$π.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:y=kx+b(k>0,b>0)是圆O:x2+y2=3的一条切线,且l与椭圆C交于不同的两点A,B.若弦AB的长为$\frac{4\sqrt{6}}{7}$,求直线l的方程.

查看答案和解析>>

同步练习册答案