17£®ÒÑÖªF1£¨-c£¬0£©£¬F2£¨c£¬0£©·Ö±ðÊÇÍÖÔ²M£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬ÇÒ|F1F2|=2$\sqrt{3}$£¬ÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£®£¨1£©ÇóÍÖÔ²MµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÍÖÔ²ÓÒ½¹µãF2×÷Ö±Ïßl½»ÍÖÔ²MÓÚA£¬BÁ½µã£®
¢Ùµ±Ö±ÏßlµÄбÂÊΪ1ʱ£¬ÇóÏß¶ÎABµÄ³¤£»
¢ÚÈôÍÖÔ²MÉÏ´æÔÚµãP£¬Ê¹µÃÒÔOA£¬OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ¨OÎª×ø±êÔ­µã£©£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©¢ÙÉèÖ±Ïßl£ºy=x-$\sqrt{3}$£¬´úÈëÍÖÔ²·½³Ì£¬Çó³ö·½³ÌµÄ¸ù£¬¼´¿ÉÇóÏß¶ÎABµÄ³¤£»
¢Ú¼ÙÉèÍÖÔ²ÉÏ´æÔÚµãP£¨m£¬n£©£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ®ÉèÖ±Ïß·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬½áºÏ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£¬Ôòm=x1+x2£¬n=y1+y2£¬ÇóµÃPµÄ×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉµÃµ½k£¬¼´¿ÉÅжÏPµÄ´æÔÚºÍÖ±Ïߵķ½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬2c=2$\sqrt{3}$£¬µÃ$c=\sqrt{3}$£¬
ÓÖ$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬¡àa=2£¬b2=a2-c2=1£¬
¡àÍÖÔ²MµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©¢Ù¿ÉÉèÖ±Ïß·½³ÌΪy=x-$\sqrt{3}$´úÈëÍÖÔ²·½³Ì¿ÉµÃ5x2-8$\sqrt{3}$x+8=0£¬
¡àx=$\frac{4\sqrt{3}¡À2\sqrt{2}}{5}$£¬¡àÏÒABµÄ³¤Îª$\sqrt{2}¡Á\frac{4\sqrt{2}}{5}=\frac{8}{5}$£»
¢Ú¼ÙÉèÍÖÔ²ÉÏ´æÔÚµãP£¨m£¬n£©£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ®
ÉèÖ±Ïß·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨1+4k2£©x2-8$\sqrt{3}$k2x+12k2-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£¬Ôòm=x1+x2£¬n=y1+y2£¬
x1+x2=$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{12{k}^{2}-4}{1+4{k}^{2}}$£¬
y1+y2=k£¨x1+x2-2$\sqrt{3}$£©=k£¨$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$-2$\sqrt{3}$£©=$\frac{-2\sqrt{3}}{1+4{k}^{2}}$£¬
¼´ÓÐP£¨$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$£¬$\frac{-2\sqrt{3}}{1+4{k}^{2}}$£©£¬
´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{48{k}^{4}}{£¨1+4{k}^{2}£©^{2}}+\frac{12{k}^{2}}{£¨1+4{k}^{2}£©^{2}}=1$£¬
½âµÃk2=$\frac{1}{8}$£¬¼´k=¡À$\frac{\sqrt{2}}{4}$£¬
¹Ê´æÔÚµãP£¨$\frac{\sqrt{3}}{3}£¬-\frac{\sqrt{6}}{6}$£©£¬»ò£¨$\frac{\sqrt{3}}{3}£¬\frac{\sqrt{6}}{6}$£©£¬
ÔòÓÐÖ±Ïßl£ºy=$\frac{\sqrt{2}}{4}x-\frac{\sqrt{6}}{4}$»òy=-$\frac{\sqrt{2}}{4}x+\frac{\sqrt{6}}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÀëÐÄÂʹ«Ê½ºÍ·½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬ÒÑÖªAB¡Í²àÃæBB1C1C£¬AB=BC=1£¬BB1=2£¬¡ÏBCC1=$\frac{¦Ð}{3}$£®
£¨1£©ÇóÖ¤£ºC1B¡ÍÆ½ÃæABC£»
£¨2£©µãB1µ½Æ½ÃæACC1A1µÄ¾àÀëΪd1£¬µãA1µ½Æ½ÃæABC1µÄ¾àÀëΪd2£¬Çó$\frac{{d}_{1}}{{d}_{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª$|{\begin{array}{l}{cos75¡ã}&{-sin¦Á}\\{sin75¡ã}&{cos¦Á}\end{array}}|=\frac{1}{3}$£¬Ôòcos£¨30¡ã+2¦Á£©=$\frac{7}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈçͼÕý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ2£¬Ïß¶ÎB1D1ÉÏÓÐÁ½¸ö¶¯µãE¡¢F£¬ÇÒEF=1£¬ÔòÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®EF¡ÎÆ½ÃæABCDB£®AC¡ÍBE
C£®ÈýÀâ×¶A-BEFÌå»ýΪ¶¨ÖµD£®¡÷BEFÓë¡÷AEFÃæ»ýÏàµÈ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÔϱíʾxÖáµÄ²ÎÊý·½³ÌÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x={t}^{2}+1}\\{y=0}\end{array}\right.$£¨tΪ²ÎÊý£©B£®$\left\{\begin{array}{l}{x=0}\\{y=3t+1}\end{array}\right.$£¨tΪ²ÎÊý£©
C£®$\left\{\begin{array}{l}{x=1+sin¦È}\\{y=0}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©D£®$\left\{\begin{array}{l}{x=4t+1}\\{y=0}\end{array}\right.$£¨tΪ²ÎÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªF1£¬F2ÊÇÍÖÔ²$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1µÄÁ½¸ö½¹µã£¬¹ýµãF2µÄÖ±Ïß½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬ÔÚ¡÷F1MNÖУ¬ÈôÓÐÁ½±ßÖ®ºÍÊÇ14£¬ÔòµÚÈý±ßµÄ³¤¶ÈΪ£¨¡¡¡¡£©
A£®6B£®5C£®4D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬|A1B1|=$\sqrt{7}$£¬F1ÊÇÍÖÔ²CµÄ×󽹵㣬A1ÊÇÍÖÔ²CµÄ×󶥵㣬B1ÊÇÍÖÔ²CµÄÉ϶¥µã£¬ÇÒ$\overrightarrow{{A}_{1}{F}_{1}}$=$\overrightarrow{{F}_{1}O}$£¬µãP£¨n£¬0£©£¨n¡Ù0£©Êdz¤ÖáÉϵÄÈÎÒ»¶¨µã£¬¹ýPµãµÄÈÎÒ»Ö±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚ¶¨µãQ£¨x0£¬0£©£¬Ê¹µÃ$\overrightarrow{QA}$•$\overrightarrow{QB}$Ϊ¶¨Öµ£¬Èô´æÔÚ£¬ÊÔÇó³ö¶¨µãQµÄ×ø±ê£¬²¢Çó³ö´Ë¶¨Öµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¹ýµã£¨0£¬-$\sqrt{3}$£©µÄÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓëË«ÇúÏß$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1£¨m£¾0£¬n£¾0£©ÓÐÏàͬµÄ½¹µã£¨-c£¬0£©ºÍ£¨c£¬0£©£¬ÈôcÊÇa¡¢mµÄµÈ±ÈÖÐÏn2ÊÇ2m2Óëc2µÄµÈ²îÖÐÏ
£¨1£©ÇóÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÉèÖ±ABÓëÍÖÔ²½»ÓÚ²»Í¬Á½µãA¡¢B£¬µãA¹ØÓÚxÖáµÄ¶Ô³ÆµãΪA¡ä£¬ÈôÖ±ÏßAB¹ý¶¨µãT£¨$\sqrt{2}$£¬0£©£¬ÇóÖ¤£ºÖ±ÏßA¡äB¹ý¶¨µãP£¨2$\sqrt{2}$£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£¬º¯Êýf£¨x£©=ex+x-2µÄÁãµãΪa£¬º¯Êýg£¨x£©=lnx+x-2µÄÁãµãΪb£¬ÔòÏÂÁв»µÈʽÖгÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®a£¼1£¼bB£®a£¼b£¼1C£®1£¼a£¼bD£®b£¼1£¼a

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸