| A. | EF∥平面ABCD | B. | AC⊥BE | ||
| C. | 三棱锥A-BEF体积为定值 | D. | △BEF与△AEF面积相等 |
分析 在A中,由EF∥BD,得EF∥平面ABCD;在B中,由AC⊥平面BB1D1D,得AC⊥BE;在C中,由EF=1,S△BEF=1,得三棱锥A-BEF体积为定值;在D中,△BEF与△AEF底都是EF,但高不相等,故面积不相等.
解答
解:在A中:∵正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E、F,
∴EF∥BD,BD?平面ABCD,EF?平面ABCD,
∴EF∥平面ABCD,故A正确;
在B中:如图,正方体中,AC⊥BD,AC⊥BB1,BD∩BB1=B,
∴AC⊥平面BB1D1D.
又BE?平面BB1D1D,∴AC⊥BE,故B正确;
在C中:∵EF=1,∴${S}_{△BEF}=\frac{1}{2}×EF×B{B}_{1}$=$\frac{1}{2}×1×2$=1,
设AC∩BD=O,则AO⊥平面BEF,AO=$\frac{1}{2}\sqrt{4+4}$=$\sqrt{2}$,
∴三棱锥A-BEF体积V=$\frac{1}{3}×{S}_{△BEF}×AO$=$\frac{1}{3}×1×\sqrt{2}=\frac{\sqrt{2}}{3}$,
∴三棱锥A-BEF体积为定值,故C正确;
在D中:${S}_{△BEF}=\frac{1}{2}×EF×B{B}_{1}$=$\frac{1}{2}×1×2$=1,
${S}_{△AEF}=\frac{1}{2}×\sqrt{3}×1$=$\frac{\sqrt{3}}{2}$,
∴△BEF与△AEF面积不相等,故D错误.
故选:D.
点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com