13£®É輯ºÏM={1£¬2£¬3£¬¡­£¬n}£¨n¡Ý3£©£¬¼ÇMµÄº¬ÓÐÈý¸öÔªËØµÄ×Ó¼¯¸öÊýΪSn£¬Í¬Ê±½«Ã¿Ò»¸ö×Ó¼¯ÖеÄÈý¸öÔªËØÓÉСµ½´óÅÅÁУ¬È¡³öÖмäµÄÊý£¬ËùÓÐÕâЩÖмäµÄÊýµÄºÍ¼ÇΪTn£®
£¨1£©Çó$\frac{{T}_{3}}{{S}_{3}}$£¬$\frac{{T}_{4}}{{S}_{4}}$£¬$\frac{{T}_{5}}{{S}_{5}}$£¬$\frac{{T}_{6}}{{S}_{6}}$µÄÖµ£»
£¨2£©²ÂÏë$\frac{{T}_{n}}{{S}_{n}}$µÄ±í´ïʽ£¬²¢Ö¤Ã÷Ö®£®

·ÖÎö £¨1£©¸ù¾ÝËù¸øµÄ¶¨ÒåÇó³ö¼´¿É£¬
£¨2£©²ÂÏë$\frac{{T}_{n}}{{S}_{n}}$=$\frac{n+1}{2}$£®ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷Ö®£®

½â´ð ½â£º£¨1£©µ±n=3ʱ£¬M={1£¬2£¬3£©£¬S3=1£¬T3=2£¬$\frac{{T}_{3}}{{S}_{3}}$=2£¬
µ±n=4ʱ£¬M={1£¬2£¬3£¬4£©£¬S4=4£¬T4=2+2+3+3=10£¬$\frac{{T}_{4}}{{S}_{4}}$=$\frac{5}{2}$£¬
$\frac{{T}_{5}}{{S}_{5}}$=3£¬$\frac{{T}_{6}}{{S}_{6}}$=$\frac{7}{2}$
£¨2£©²ÂÏë$\frac{{T}_{n}}{{S}_{n}}$=$\frac{n+1}{2}$£®
ÏÂÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷Ö®£®
Ö¤Ã÷£º¢Ùµ±n=3ʱ£¬ÓÉ£¨1£©Öª²ÂÏë³ÉÁ¢£»
¢Ú¼ÙÉèµ±n=k£¨k¡Ý3£©Ê±£¬²ÂÏë³ÉÁ¢£¬
¼´$\frac{{T}_{k}}{{S}_{k}}$=$\frac{k+1}{2}$£¬¶øSk=Ck3£¬ËùÒÔµÃTk=$\frac{k+1}{2}$Ck3£¬
Ôòµ±n=k+1ʱ£¬Ò×ÖªSk+1=Ck+13£¬
¶øµ±¼¯ºÏM´Ó{1£¬2£¬3£¬¡­£¬k}±äΪ{1£¬2£¬3£¬¡­£¬k£¬k+1}ʱ£¬Tk+1ÔÚTkµÄ»ù´¡ÉÏÔö¼ÓÁË1¸ö2£¬2¸ö3£¬3¸ö4£¬¡­£¬ºÍ£¨k-1£©¸ök£¬
ËùÒÔTk+1=Tk+2¡Á1+3¡Á2+4¡Á3+¡­+k£¨k-1£©£¬
=$\frac{k+1}{2}$Ck3+2£¨C22+C32+C42+¡­+Ck2£©£¬
=$\frac{k+1}{2}$Ck3+2£¨C33+C32+C42+¡­+Ck2£©£¬
=$\frac{k-2}{2}$Ck+13+2Ck+13£¬
=$\frac{k+2}{2}$Ck+13£¬
=$\frac{£¨k+1£©+1}{2}$Sk+1£¬
¼´$\frac{{T}_{k+1}}{{S}_{k+1}}$=$\frac{£¨k+1£©+1}{2}$£®
¼´ËùÒÔµ±n=k+1ʱ£¬²ÂÏëÒ²³ÉÁ¢£®
×ÛÉÏËùÊö£¬²ÂÏë³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÁËÊýѧ¹éÄÉ·¨¡¢µÝÍÆ¹«Ê½¡¢ÊýÁеÄͨÏʽ£¬¿¼²éÁ˲ÂÏë¹éÄÉÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÇóÏÂÁк¯ÊýµÄÖµÓò
£¨1£©y=3sinx-2£»
£¨2£©y=$\frac{1}{2}$-sinx£»
£¨3£©y=2|sinx|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚËÄÀâ×¶P-ABCDÖУ¬²àÃæPCD¡Íµ×ÃæABCD£¬PD¡ÍCD£¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AB¡ÎDC£¬¡ÏADC=90¡ã£¬AB=AD=PD=1£¬CD=2£¬µãEλPCµÄÖеã
£¨¢ñ£©ÇóÖ¤£ºBC¡ÍÆ½ÃæPBD£»
£¨¢ò£©ÇóEµ½Æ½ÃæPBDµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®É躯Êýf£¨x£©=|f1£¨x£©-f2£¨x£©|£¬ÆäÖÐÃݺ¯Êýf1£¨x£©µÄͼÏó¹ýµã£¨2£¬$\sqrt{2}$£©£¬ÇÒº¯Êýf2£¨x£©=ax+b£¨a£¬b¡ÊR£©£®
£¨1£©µ±a=0£¬b=1ʱ£¬Ð´³öº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Éè¦ÌΪ³£Êý£¬aΪ¹ØÓÚxµÄżº¯Êýy=log4[£¨$\frac{1}{2}$£©x+¦Ì•2x]£¨x¡ÊR£©µÄ×îСֵ£¬º¯Êýf£¨x£©ÔÚ[0£¬4]ÉϵÄ×î´óֵΪu£¨b£©£¬Çóº¯Êýu£¨b£©µÄ×îСֵ£»
£¨3£©Èô¶ÔÓÚÈÎÒâx¡Ê[0£¬1]£¬¾ùÓÐ|f2£¨x£©|¡Ü1£¬Çó´úÊýʽ£¨a+1£©£¨b+1£©µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª$|{\begin{array}{l}{cos75¡ã}&{-sin¦Á}\\{sin75¡ã}&{cos¦Á}\end{array}}|=\frac{1}{3}$£¬Ôòcos£¨30¡ã+2¦Á£©=$\frac{7}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýy=x-exµÄµ¥µ÷¼õÇø¼äÊÇ£¨0£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈçͼÕý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ2£¬Ïß¶ÎB1D1ÉÏÓÐÁ½¸ö¶¯µãE¡¢F£¬ÇÒEF=1£¬ÔòÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®EF¡ÎÆ½ÃæABCDB£®AC¡ÍBE
C£®ÈýÀâ×¶A-BEFÌå»ýΪ¶¨ÖµD£®¡÷BEFÓë¡÷AEFÃæ»ýÏàµÈ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªF1£¬F2ÊÇÍÖÔ²$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1µÄÁ½¸ö½¹µã£¬¹ýµãF2µÄÖ±Ïß½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬ÔÚ¡÷F1MNÖУ¬ÈôÓÐÁ½±ßÖ®ºÍÊÇ14£¬ÔòµÚÈý±ßµÄ³¤¶ÈΪ£¨¡¡¡¡£©
A£®6B£®5C£®4D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Éèp£º$£¨3{x^2}+ln3£©'=6x+\frac{1}{3}$£¬q£ºº¯Êýy=£¨3-x2£©exµÄµ¥µ÷µÝÔöÇøÊÇ£¨-3£¬1£©£¬ÔòpÓëqµÄ¸´ºÏÃüÌâµÄÕæ¼ÙÊÇ£¨¡¡¡¡£©
A£®¡°p¡Åq¡±¼ÙB£®¡°p¡Äq¡±ÕæC£®¡°©Vq¡±ÕæD£®¡°p¡Åq¡±Õæ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸