精英家教网 > 高中数学 > 题目详情
7.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=$\frac{π}{3}$.
(1)求证:C1B⊥平面ABC;
(2)点B1到平面ACC1A1的距离为d1,点A1到平面ABC1的距离为d2,求$\frac{{d}_{1}}{{d}_{2}}$.

分析 (1)由已知推导出AB⊥BC1,BC⊥BC1,由此能证明BC1⊥平面ABC.
(2)由${V}_{{C}_{1}-ABC}={V}_{{B}_{1}-AO{C}_{1}}$,得点B1到平面ACC1A1的距离为${d}_{1}=\frac{\sqrt{21}}{7}$,点A1到平面ABC1的距离即B1到平面ABC1的距离,由此能求出$\frac{{d}_{1}}{{d}_{2}}$.

解答 证明:(1)∵侧面AB⊥BB1C1C,BC1?侧面BB1C1C,∴AB⊥BC1
在△BCC1中,BC=1,CC1=BB1=2,∠BCC1=$\frac{π}{3}$,
由余弦定理得$B{{C}_{1}}^{2}=B{C}^{2}+C{{C}_{1}}^{2}$-2BC•CC1•cos∠BCC1=$1+4-2×1×2×cos\frac{π}{2}$=3,
∴$B{C}_{1}=\sqrt{3}$,∴BC2+BC12=CC12,∴BC⊥BC1
∵BC∩AB=B,∴BC1⊥平面ABC.
解:点B1连化为点N,${V}_{{C}_{1}-ABC}=\frac{\sqrt{3}}{6}$,${S}_{△AO{C}_{1}}=\frac{\sqrt{7}}{2}$,
又${V}_{{C}_{1}-ABC}={V}_{{B}_{1}-AO{C}_{1}}$,
∴点B1到平面ACC1A1的距离为${d}_{1}=\frac{\sqrt{21}}{7}$,
点A1到平面ABC1的距离即B1到平面ABC1的距离,
由题意B1C1⊥平面ABC1,∴d2=B1C1=1.
∴$\frac{{d}_{1}}{{d}_{2}}$=$\frac{\sqrt{21}}{7}$.

点评 本题考查线面垂直的证明,考查点到平面的距离的比值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知R上的可导偶函数f(x)满足f(x+2)=f(x-2),又f′(1)=5,则f′(15)的值为(  )
A.5B.-5C.0D.±5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简sin2β+cos4β+sin2βcos2β的结果是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC中,AB=5,AC=12,BC=13,P为△ABC平面外一点,PA=PB=PC=7
(1)求P到平面ABC的距离;
(2)求P到AC的距离;
(3)求PA,PB与平面ABC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,三棱柱的侧棱长为2,底面是边长为2的正三角形,AA1⊥面A1B1C1,正视图是边长为2正方形.
(Ⅰ)画出该三棱柱的侧视图,并求其侧视图的面积;
(Ⅱ)求点B1到面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在长方体ABCD-A1B1C1D1中,|AB|=|BC|=2,|D1D|=3,点M是B1C1的中点,点N是AB的中点.建立如图所示的空间直角坐标系.
(1)写出点D,N,M的坐标;
(2)求线段MD,MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.
(1)求异面直线OC与MD所成角的正切值的大小;
(2)求点A到平面OBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图(1)示,在梯形BCDE中,BC∥DE,BA⊥DE,且EA=DA=AB=2CB=2,如图(2)沿AB将四边形ABCD折起,使得平面ABCD与平面ABE垂直,M为CE的中点.

(Ⅰ) 求证:BC∥面DAE;
(Ⅱ) 求证:AM⊥BE;
(Ⅲ) 求点D到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知F1(-c,0),F2(c,0)分别是椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且|F1F2|=2$\sqrt{3}$,离心率e=$\frac{\sqrt{3}}{2}$.(1)求椭圆M的标准方程;
(2)过椭圆右焦点F2作直线l交椭圆M于A,B两点.
①当直线l的斜率为1时,求线段AB的长;
②若椭圆M上存在点P,使得以OA,OB为邻边的四边形OAPB为平行四边形(O为坐标原点),求直线l的方程.

查看答案和解析>>

同步练习册答案