精英家教网 > 高中数学 > 题目详情
已知函数f(x)=asin(πx+a)+bcos(πx+β)+1,且f(2006)=-1,求f(2007)的值.
考点:对数函数的单调性与特殊点
专题:函数的性质及应用
分析:由条件利用诱导公式求得asina+bsinb的值,再利用诱导公式求得f(2007)的值.
解答: 解:由题意可得f(2006)=asin(2006π+a)+bcos(2006π+β)+1=asina+bsinb+1=-1,
∴asina+bsinb=-2.
故f(2007)=asin(2007π+a)+bcos(2007π+b)+1=-asina-bcosb+1=2+1=3.
点评:本题主要考查诱导公式的应用,求出asina+bsinb的值,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)与x轴的两个交点为(-2,0),(1,0)且最大值为
9
2
,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+x.对于?x∈[0,1],f(x)≤1成立,试求实数a的取值范围.
f(x)≤1?ax2+x≤1,x∈[0,1]…①
当x=0时,a≠0,①式显然成立;
当x∈(0,1]时,①式化为a≤
1
x2
-
1
x
在x∈(0,1]上恒成立.
设t=
1
x
,则t∈[1,+∞),则有a≤t2-t,所以只须a≤(t2-t)min=0
⇒a≤0,又a≠0,故a<0
综上,所求实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=esinx(-π≤x≤π)的大致图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
sinα+cosα
tan2α-1

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
m
-
y2
m+2
=1(m>0)的一条渐近线方程为y=2x,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

程序框图如图,若输出的s值为两位数时,则n的值为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程ρ=2sinθ,直线l的参数方程
x=3+
2
2
t
y=
2
2
t
(t为参数),以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系;
(1)求曲线C与直线l的直角坐标方程.
(2)若M、N分别为曲线C与直线l上的两个动点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,若E是B1D1的中点,则直线BE垂直于(  )
A、AC
B、BD
C、A1D
D、A1D1

查看答案和解析>>

同步练习册答案