精英家教网 > 高中数学 > 题目详情
4.设实数x,y满足$\left\{\begin{array}{l}{(2x-y+2)(4x-y-2)≤0}\\{0≤x≤2}\\{y≥0}\end{array}\right.$,若目标函数z=mnx+y(0<n<m)的最大值为10,则2m+n的取值范围为(3$\sqrt{2}$,+∞).

分析 作出不等式组对应的平面区域,利用目标函数的最大值确定最优解,联立方程组求得最优解的坐标,代入目标函数求得mn=2,结合已知得到m的范围,然后利用函数单调性即可得到结论.

解答 解:作出不等式组对应的平面区域如图,
由z=mnx+y(m>n>0),
得y=-mnx+z(m>n>0),
则由图象可知当直线y=-mnx+z经过点C时,截距最大,此时z最大为10,
由$\left\{\begin{array}{l}{2x-y+2=0}\\{4x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=6}\end{array}\right.$.
即C(2,6),此时2mn+6=10,
即mn=2,
∵m>n>0,∴m$>\sqrt{2}$.
∴2m+n=2m+$\frac{2}{m}$=2(m+$\frac{1}{m}$)$>2(\sqrt{2}+\frac{\sqrt{2}}{2})=3\sqrt{2}$.
∴2m+n的取值范围为($3\sqrt{2},+∞$).
故答案为:($3\sqrt{2},+∞$).

点评 本题主要考查线性规划的应用以及利用函数单调性求函数最值,利用数形结合是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知曲线y=5$\sqrt{x}$,求:
(1)曲线上与直线y=2x-4平行的切线方程;
(2)求过点P(0,5)且与曲线相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}中,a1=3,a3=9,若bn=log2(an-1),数列{bn}为等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:$\frac{1}{{{a_2}-{a_1}}}+\frac{1}{{{a_3}-{a_2}}}+…+\frac{1}{{{a_{n+1}}-{a_n}}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈R,x-2>lgx,命题q:?x>-1,ex>ln(x+1),则(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax,则“0<a≤$\frac{1}{4}$”是“对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+y-5≥0}\\{2x-y-3≤0}\end{array}\right.$,若使函数Z=ax+by(2b>a>0)的最大值为10,求ab的最大值(  )
A.$\frac{25}{7}$B.$\frac{5}{7}$C.5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin(2x-$\frac{π}{6}$)-1,设△ABC的内角A、B、C的对边长分别为a、b、c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,D在边BC上,BD=2,DC=1,∠B=60°,∠ADB=30°,则AC=$\sqrt{7}$.

查看答案和解析>>

同步练习册答案