分析 (1)利用三角形的内角转化为A的三角函数,利用两角和的正弦函数求解结合正弦定理求出表达式,求出结合即可.
(2)由余弦定理以及基本不等式可求ab的最大值,利用三角形面积公式即可得解.
解答 解:(1)∵cosBsinC+(a-sinB)cos(A+B)=0,
∴可得:cosBsinC-(a-sinB)cosC=0,
即:sinA-acosC=0,
∵由正弦定理可知:$\frac{a}{sinA}$=$\frac{c}{sinC}$,
∴$\frac{asinC}{c}$-acosC=0,又c=1,
∴asinC-acosC=0,
∴sinC-cosC=0,可得$\sqrt{2}$sin(C-$\frac{π}{4}$)=0,C是三角形内角,
∴C=$\frac{π}{4}$.
(2)∵由余弦定理可知:c2=a2+b2-2abcosC,
得1=a2+b2-$\sqrt{2}$ab≥2ab-$\sqrt{2}$ab,解得:ab≤$\frac{1}{2-\sqrt{2}}$=$\frac{2+\sqrt{2}}{2}$(当且仅当a=b时等号成立),
∴S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}×$$\frac{\sqrt{2}}{2}$×$\frac{2+\sqrt{2}}{2}$=$\frac{\sqrt{2}+1}{4}$,即△ABC面积的最大值为$\frac{\sqrt{2}+1}{4}$.
点评 本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$<α≤$\frac{5π}{6}$ | B. | $\frac{π}{3}$<α<π | C. | $\frac{π}{3}$≤α<π | D. | $\frac{π}{3}$<α≤$\frac{2π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com