精英家教网 > 高中数学 > 题目详情
定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈[-2,-1]时,f(x)的最小值为
 
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:根据题意,求出x∈[-2,-1]时f(x)的解析式,再求f(x)在区间[-2,-1]上的最小值即可.
解答: 解:当x∈[-2,-1]时,x+2∈[0,1],
∴f(x+2)=(x+2)2-(x+2)=x2+3x+2,
又f(x+1)=2f(x),
∴f(x+2)=f[(x+1)+1]=2f(x+1)=4f(x),
∴4f(x)=x2+3x+2(-2≤x≤-1),
∴f(x)=
1
4
(x2+3x+2)=
1
4
(x+
3
2
)
2
-
1
16
(-2≤x≤-1),
∴当x=-
3
2
时,f(x)取得最小值-
1
16

故答案为:-
1
16
点评:本题考查了函数的解析式以及在闭区间上的最值问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x、y满足
x≥0
y≥0
2x-y≤0
x-3y+5≥0
,则2x+y的最大值为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+a+b在区间[-2,a]上是奇函数,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x铀正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为
x=m+tcosα
y=tsinα
(t为参数,0≤α<π),射线θ=φ,θ=φ+
π
4
,θ=φ-
π
4
与曲线C1交于(不包括极点O)三点A、B、C.
(Ⅰ)求证:|OB|+|OC|=
2
|OA|;
(Ⅱ)当φ=
π
12
时,B,C两点在曲线C2上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aex+blnx(a,b为常实数)的定义域为D,关于函数f(x)给出下列命题:
①对于任意的正数a,存在正数b,使得对于任意的x∈D,都有f(x)>0.
②当a>0,b<0时,函数f(x)存在最小值;
③若ab<0时,则f(x)一定存在极值点;
④若ab≠0时,方程f(x)=f′(x)在区间(1,2)内有唯一解;
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)的函数满足f(x+4)=x3+2,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、“a>b”是“a2>b2”的必要条件
B、自然数的平方大于0
C、存在一个钝角三角形,它的三边长均为整数
D、“若a,b都是偶数,则a+b是偶数”的否命题为真

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x-y≤0
x+y≤1
2x+y≥1
,则目标函数z=x+5y的最大值为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,满足:a2+a4=18,S7=91.递增的等比数列{bn}前n项和为Tn,满足:b1+bk=66,b2bk-1=128,Tk=126.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{cn}对?n∈N*,均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1
成立,求c1+c2+…+c2013

查看答案和解析>>

同步练习册答案