精英家教网 > 高中数学 > 题目详情
2.观察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5

照此规律,第4个等式可表示为(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7.

分析 通过观察给出的前三个等式的项数,开始值和结束值,即可归纳得到第n个等式,即可得出结论.

解答 解:题目中给出的前三个等式的特点是第一个等式的左边仅含一项,第二个等式的左边含有两项相乘,第三个等式的左边含有三项相乘,由此归纳第n个等式的左边含有n项相乘,由括号内数的特点归纳第n个等式的左边应为:(n+1)(n+2)(n+3)•…•(n+n),
每个等式的右边都是2的几次幂乘以从1开始几个相邻奇数乘积的形式,且2的指数与奇数的个数等于左边的括号数,由此可知第n个等式的右边为2n•1•3•5…(2n-1).
所以第n个等式可为(n+1)(n+2)(n+3)…(n+n)=2n×1×3×5×…×(2n-1).
第4个等式可为(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7.
故答案为(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7.

点评 本题考查了归纳推理,归纳推理是根据已有的事实,通过观察、联想、对比,再进行归纳,类比,然后提出猜想的推理,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列函数中,在区间(0,1)上是增函数的是(  )
A.y=|x|B.y=2-xC.y=$\frac{1}{x}$D.y=-x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)当a=0时,求函数f(x)在(1,f(1))处的切线方程;
(2)令g(x)=f(x)-(ax-1),求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,以坐标原点O为几点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),($\frac{2\sqrt{3}}{3}$,$\frac{π}{2}$),圆C的参数方程$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:
晚上白天合计
男婴243155
女婴82634
合计325789
你认为婴儿的性别与出生时间有关系的把握为(  )
参考公式及数据:$\begin{array}{l}{K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}\end{array}$
P(k2≥k)0.250.150.1 00.050.025
k1.3232.0722.7063.8415.024
A.80%B.90%C.95%D.99%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=eax+3x有大于零的极值点,则 a的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设Sn是等差数列{an}的前n项和,S7=3(a1+a9)则的$\frac{a_5}{a_4}$值为$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,已知三个内角A,B,C所对的边分别为a,b,c,若$A=\frac{π}{3},a=3$,$c=\sqrt{6}$,则角C=(  )
A.$\frac{π}{4}$或$\frac{3π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系xOy中,由直线x=0,x=1,y=0与曲线y=ex围成的封闭图形的面积是(  )
A.1-eB.eC.-eD.e-1

查看答案和解析>>

同步练习册答案