分析 通过观察给出的前三个等式的项数,开始值和结束值,即可归纳得到第n个等式,即可得出结论.
解答 解:题目中给出的前三个等式的特点是第一个等式的左边仅含一项,第二个等式的左边含有两项相乘,第三个等式的左边含有三项相乘,由此归纳第n个等式的左边含有n项相乘,由括号内数的特点归纳第n个等式的左边应为:(n+1)(n+2)(n+3)•…•(n+n),
每个等式的右边都是2的几次幂乘以从1开始几个相邻奇数乘积的形式,且2的指数与奇数的个数等于左边的括号数,由此可知第n个等式的右边为2n•1•3•5…(2n-1).
所以第n个等式可为(n+1)(n+2)(n+3)…(n+n)=2n×1×3×5×…×(2n-1).
第4个等式可为(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7.
故答案为(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7.
点评 本题考查了归纳推理,归纳推理是根据已有的事实,通过观察、联想、对比,再进行归纳,类比,然后提出猜想的推理,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 晚上 | 白天 | 合计 | |
| 男婴 | 24 | 31 | 55 |
| 女婴 | 8 | 26 | 34 |
| 合计 | 32 | 57 | 89 |
| P(k2≥k) | 0.25 | 0.15 | 0.1 0 | 0.05 | 0.025 |
| k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
| A. | 80% | B. | 90% | C. | 95% | D. | 99% |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$或$\frac{3π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com