精英家教网 > 高中数学 > 题目详情
(1-2x)7=a0+a1x+a2x2+…+a7x7,则a1+a2+…+a7=
 
考点:二项式系数的性质
专题:二项式定理
分析:在所给的等式中,令x=0,可得a0的值,再令x=1,可得a0+a1+a2+…+a7的值,从而求得a1+a2+…+a7的值.
解答: 解:在(1-2x)7=a0+a1x+a2x2+…+a7x7中,令x=0,可得a0=1,
再令x=1,可得a0+a1+a2+…+a7=-1,∴a1+a2+…+a7=-2,
故答案为:-2.
点评:本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于基题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察下列问题:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013
令x=1,可得a0+a1+a2+…+a2013=(1-2•1)2013=-1,
令x=1,可得a0-a1+a2+…-a2013=(1+2•1)2013=32013
请仿照这种“赋值法”,令x=0,得到a0=
 
,并求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中错误的是(  )
A、命题“若x2-5x+6=0,则x=3”的逆否命题是“若x≠3,则x2-5x+6≠0”
B、已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假
C、若x、y∈R,则“x=y”是xy≥(
x+y
2
2成立的充要条件
D、对命题p:?x∈R,使x2+x+2<0,则¬p:?x∈R,则x2+x+2≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边过点(3a-9,a+2)且cosα≤0,sinα>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)若a=1,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若a=-1,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC,边a,b是方程x2-2
3
x+2=0的两根,角A,B满足2cos(A+B)-1=0,求角C的度数,边c的长度及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tan
α
2
=
1
2
,求sin(α+
π
6
)的值.
(2)已知α∈(π,
3
2
π),cosα=-
5
13
,tan
β
2
=
1
3
,求cos(
α
2
+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,1),
u
=
a
+2
b
v
=2
a
-
b

(1)当
u
v
时,求x的值;         
(2)当
u
v
时,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和F分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的中心和左焦点,过O做直线交椭圆于P、Q两点,若|
PQ
|的最大值是4,△PFQ周长L的最小值为6.
(1)求椭圆C的方程;
(2)直线l经过定点(0,2),且与椭圆C交于A,B两点,求△OAB面积的最大值.

查看答案和解析>>

同步练习册答案