精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)若a=1,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若a=-1,求f(x)的单调区间.
考点:利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:导数的概念及应用
分析:(1)先求出函数的导数,切线的斜率,切点的坐标,代入切线方程求出即可,(2)求出函数的导数,解不等式求出单调区间.
解答: 解:(Ⅰ)∵f(x)=(x2+x-1)ex
∴f′(x)=(2x+1)ex+(x2+x-1)ex=(x2+3x)ex
∴k=f′(1)=4e,
∵f(1)=e,
∴所求切线方程为:4ex-y-3e=0,
(Ⅱ)∵f(x)=(-x2+x-1)ex
∴f′(x)=-x(x+1)ex
令f′(x)<0,解得:x<-1,x>0,
令f′x)>0,解得:-1<x<0,
∴f(x)的减区间为(-∞,-1),(0,+∞),增区间为(-1,0).
点评:本题考查了函数的单调性,导数的应用,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若P为曲线
x=secα
y=tanα
(α为参数)上的动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,M、N分别是棱DD1和BB1上的点,MD=
1
3
DD1,NB=
1
3
BB1,那么正方体的过M、N、C1的截面图形是(  )
A、三角形B、四边形
C、五边形D、六边形

查看答案和解析>>

科目:高中数学 来源: 题型:

己知抛物线y2=2px(p>0)的准线恰好过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点,两条曲线的交点的连线过双曲线的右焦点,则该双曲线的离心率为(  )
A、
2
+1
B、2
C、
2
D、
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x+2
(Ⅰ)求y=f(x)的表达式
(Ⅱ)求y=f(x)与函数y=-x2+5围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1-2x)7=a0+a1x+a2x2+…+a7x7,则a1+a2+…+a7=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1=1,a2=4,an+2=4an+1+an,bn=
an+1
an
,n∈N*
(Ⅰ)求b1,b2,b3的值;
(Ⅱ)设cn=bnbn+1,Sn为数列{cn}的前n项和,求证:Sn≥17n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数g(x)=x2+bx+c且在x=-1处取得最小值为m-1(m≠0).
(Ⅰ)求g(x);
(Ⅱ)设函数f(x)=
g(x)
x
,若曲线y=f(x)上的点到点Q(0,2)的距离的最小值为
2
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1g
1-x
1+x

(Ⅰ)试用函数单调性定义证明:f(x)在其定义域上是减函数;
(Ⅱ)要使方程f(x)=x+b在[-
1
2
1
2
]上恒有实数解,求实数b的取值范围.

查看答案和解析>>

同步练习册答案