精英家教网 > 高中数学 > 题目详情
20.已知sin5.1°=m,则sin365.1°=(  )
A.1+mB.-mC.mD.与m无关

分析 利用诱导公式即可得出.

解答 解:∵sin5.1°=m,
则sin365.1°=sin5.1°=m,
故选:C.

点评 本题考查了诱导公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.写出(x${\;}^{6}+\frac{1}{x\sqrt{x}}$)5的展开式中常数项:5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线${x^2}=-\frac{1}{4}y$的焦点坐标是(  )
A.(-1,0)B.(-2,0)C.$(0,-\frac{1}{8})$D.$(0,-\frac{1}{16})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对应边分别为a,b,c,已知b=asinC+ccosA
(1)求A+B的值;
(2)若c=$\sqrt{2}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从5台甲型和4台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有(  )
A.140种B.84种C.70种D.35种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α是锐角,$sinα=\frac{3}{5},则tanα$=(  )
A.$\frac{4}{5}$B.$\frac{3}{4}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$cosα=-\frac{3}{5}$,$α∈(\frac{π}{2},π)$.
(1)求cos2α的值;     
(2)求$sin(α+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f″(x)是函数y=f(x)的导函数f′(x)的导数,定义:若f(x)=ax3+bx2+cx+d(a≠0),且方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的对称中心.有同学发现“任何一个三次函数都有对称中心”,请你运用这一发现处理下列问题:
设$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$,则$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.以下四个命题中正确的是(  )
A.命题“对任意的x∈R,x2≥0”的否定是“对任意的x∈R,x2≤0”
B.命题“若x≥2且y≥3,则x+y≥5”的否命题为“若x<2且y<3,则x+y<5”
C.记向量$\overrightarrow{a}$=(1,-1)与$\overrightarrow{b}$=(2,m)的夹角为θ,则“|$\overrightarrow{b}$|=$\sqrt{5}$”是“夹角θ为锐角”的充分不必要条件
D.记变量x,y满足的不等式组$\left\{\begin{array}{l}{-1≤x≤1}\\{0≤y≤2}\\{-x+y≥1}\end{array}\right.$表示的平面区域为D,则“k=-1”是“直线y=kx+1平分平面区域Dy=kx+1”的必要不充分条件

查看答案和解析>>

同步练习册答案