精英家教网 > 高中数学 > 题目详情
函数f(x)=2x-2-x(x∈R).
(1)证明函数f(x)在R上为单调增函数;
(2)判断并证明函数f(x)的奇偶性.
(1)证明:在定义域R中任取两个实数x1、x2,且x1<x2
则f(x1)-f(x2)=(2x1-2-x2)-(2x2-2-x2)=2x1-2x2+
1
2x2
-
1
2x1
=(2x1-2x2)(1+
1
2x1+x2
);
∵x1<x2,∴0<2x12x22x1-2x2<0,1+
1
2x1+x2
>0;
∴f(x1)-f(x2)<0,即f(x1)<f(x2);
∴函数f(x)是R上的增函数.
(2)函数f(x)是R上的奇函数.
∵f(x)=2x-2-x
∴f(-x)=2-x-2x=-f(x);
∴f(x)是R上的奇函数.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
sinπx
(x2+1)(x2-2x+2)
.对于下列命题:
①函数f(x)是周期函数;②函数f(x)既有最大值又有最小值;
③函数f(x)的定义域是R,且其图象有对称轴;
④对于任意x∈(-1,0),f′(x)<0(f′(x)是函数f(x)的导函数).
其中真命题的序号是______.(填写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(-1,f(-1))处的切线的斜率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题为真命题的是(  )
A.f(x)在x=x0处存在极限,则f(x)在x=x0连续
B.f(x)在x=x0处无定义,则f(x)在x=x0无极限
C.f(x)在x=x0处连续,则f(x)在x=x0存在极限
D.f(x)在x=x0处连续,则f(x)在x=x0可导

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2ax-(2a+2)
(Ⅰ)解关于x的不等式f(x)>x;
(Ⅱ)若f(x)+3≥0在区间(-1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ln(
1+9x2
-3x)-1,则f(x)+f(-x)=(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域与值域相同的奇函数称为“八卦函数”,下列函数中是“八卦函数”的是(  )
A.y=
2013x+2013-x
2
B.y=ln
2014-x
2014+x
C.y=x-
1
3
D.y=|x|

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知以T=4为周期的函数f(x)=
m
1-x2
,x∈(-1,1]
1-|x-2|,x∈(1,3]
,其中m>0.若方程3f(x)=x恰有5个实数解,则m的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

判断函数的奇偶性          .

查看答案和解析>>

同步练习册答案