精英家教网 > 高中数学 > 题目详情
14.已知a为实数,则|a|≥1是关于x的绝对值不等式|x|+|x-1|≤a有解的充要条件.

分析 由于|x|+|x-1|≥|1-0|=1对于?x∈R恒成立,即可判断出.

解答 解:∵|x|+|x-1|≥|1-0|=1对于?x∈R恒成立,
因此|a|≥1是关于x的绝对值不等式|x|+|x-1|≤a有解的充要条件.
故答案为:充要.

点评 本题考查了绝对值不等式的性质、简易逻辑的判定方法,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10.
(1)用频率估计概率,求尺码落在区间(37.5,43.5]概率约是多少?
(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知某正弦函数的图象如图所示,写出符合图象的一个函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an},a1=1,a2=1,an+2=(1+sin2$\frac{nπ}{2}$)an+4cos2$\frac{nπ}{2}$,则a9的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),当x∈[-$\frac{π}{2}$,$\frac{π}{8}$]时,f(x)-a=0有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知公比为2的等比数列{an}中存在两项am,an,使得aman=16a12,则$\frac{1}{m}+\frac{4}{n}$的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:x2-5x+6≥0;命题q:0<x<4,若p或q为真,p且q为假,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且过点(1,$\frac{\sqrt{6}}{3}$),求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.不画图,写出下列函数的振幅、周期和初相,并说明这些函数的图象可以由正弦曲线经过怎样的变换得到.
(1)y=5sin($\frac{4}{3}$x+$\frac{π}{8}$);
(2)y=$\frac{3}{4}$sin($\frac{1}{5}$x-$\frac{π}{7}$);
(3)y=8sin(4x+$\frac{π}{3}$);
(4)y=$\frac{1}{2}$sin(3x-$\frac{π}{10}$).

查看答案和解析>>

同步练习册答案