精英家教网 > 高中数学 > 题目详情
3.已知x,y∈R.
(Ⅰ)若x,y满足$|{x-3y}|<\frac{1}{2}$,$|{x+2y}|<\frac{1}{6}$,求证:$|x|<\frac{3}{10}$;
(Ⅱ)求证:x4+16y4≥2x3y+8xy3

分析 (Ⅰ)|x|=$\frac{1}{5}$[|2(x-3y)+3(x+2y)|]≤$\frac{1}{5}$[|2(x-3y)|+|3(x+2y)|]<$\frac{1}{5}$(2×$\frac{1}{2}$+3×$\frac{1}{6}$)=$\frac{3}{10}$;
(Ⅱ)x4+16y4-(2x3y+8xy3)=x4-2x3y+16y4-8xy3=x3(x-2y)+8y3(2y-x)=(x-2y)2[(x+y)2+3y2]≥0即可.

解答 证明:(Ⅰ)利用绝对值不等式的性质得:
|x|=$\frac{1}{5}$[|2(x-3y)+3(x+2y)|]≤$\frac{1}{5}$[|2(x-3y)|+|3(x+2y)|]<$\frac{1}{5}$(2×$\frac{1}{2}$+3×$\frac{1}{6}$)=$\frac{3}{10}$;
(Ⅱ)因为x4+16y4-(2x3y+8xy3)=x4-2x3y+16y4-8xy3=x3(x-2y)+8y3(2y-x)
=(x-2y)(x3-8y3)=(x-2y)(x-2y)(x2+2xy+4y2
=(x-2y)2[(x+y)2+3y2]≥0,
∴x4+16y4≥2x3y+8xy3

点评 本题考查了绝对值不等式的性质,作差法证明不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若定义在(0,1)上的函数f(x)满足:f(x)>0且对任意的x∈(0,1),有f($\frac{2x}{1+{x}^{2}}$)=2f(x).则(  )
A.对任意的正数M,存在x∈(0,1),使f(x)≥M
B.存在正数M,对任意的x∈(0,1),使f(x)≤M
C.对任意的x1,x2∈(0,1)且x1<x2,有f(x1)<f(x2
D.对任意的x1,x2∈(0,1)且x1<x2,有f(x1)>f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,前n项和为Sn,且S2011=-2011,a1012=3,则S2017等于(  )
A.1009B.-2017C.2017D.-1009

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在区间[0,1]上随机取两个数x和y,则$y≥|{x-\frac{1}{2}}|$的概率为(  )
A.$\frac{1}{6}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}满足${a_n}=({{n^2}+4n})cosnπ$,则{an}的前50项的和为1375.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\left\{\begin{array}{l}2-{log_2}(-x+2),0≤x<2\\ 2-f(-x),-2<x<0\end{array}\right.$则f(x)≤2的解集为{x|-2<x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为(  )
A.$\frac{11}{12}$B.$\frac{3}{4}$C.$\frac{5}{6}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知Sn是数列{an}的前n项之和,a1=2,2Sn+1=Sn+4(n∈N*),则函数f(n)=Sn的值域是(  )
A.(0,2]B.[2,4)C.[2,+∞)D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.学校为了了解A、B两个班级学生在本学期前两个月内观看电视节目的时长,分别从这两个班级中随机抽取10名学生进行调查,得到他们观看电视节目的时长分别为(单位:小时):A班:5、5、7、8、9、11、14、20、22、31;B班:3、9、11、12、21、25、26、30、31、35.
将上述数据作为样本.
(Ⅰ)绘制茎叶图,并从所绘制的茎叶图中提取样本数据信息(至少写出2条);
(Ⅱ)分别求样本中A、B两个班级学生的平均观看时长,并估计哪个班级的学生平均观看的时间较长;
(Ⅲ)从A班的样本数据中随机抽取一个不超过11的数据记为a,从B班的样本数据中随机抽取一个不超过11的数据记为b,求a>b的概率.

查看答案和解析>>

同步练习册答案