精英家教网 > 高中数学 > 题目详情
化简:(2+1)+(22+2)+(23+3)+…+(2n+n)
考点:数列的求和
专题:等差数列与等比数列
分析:利用分组求和法求解.
解答: 解:(2+1)+(22+2)+(23+3)+…+(2n+n)
=(2+22+23+…+2n)+(1+2+3+…+n)
=
2(1-2n)
1-2
+
n(n+1)
2

=2n+1-2+
n(n+1)
2
点评:本题考查数列的前n项和的求法,是中档题,解题时认真审题,注意分组求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x∈[-3,3],则函数y=
7
x+
2
(9-x2)最大值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正六边形ABCDEF中,
BA
+
CD
+
EF
=(  )
A、
 0 
B、
BE
C、
AD
D、
CF

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义于R上的奇函数,当x≥0时,f(x)=|x-a|-a(a>0),且对任意x∈R,恒有f(x+1)≥f(x),则实数a的取值范围是(  )
A、(0,4]
B、(0,2]
C、(0,
1
2
]
D、(0,
1
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
2a2
x
-alnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性;
(3)若a>0时,函数f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1
a(a+1)
+
1
(a+1)(a+2)
+
1
(a+2)(a+3)
+
1
(a+3)(a+4)
+
1
(a+4)(a+5)

查看答案和解析>>

科目:高中数学 来源: 题型:

对具有线性相关关系的变量x和y,由测得的一组数据已求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,a∈R.
(1)若a=2,求函数f(x)的极小值;
(2)讨论函数f(x)的单调性;
(3)若方程f(x)=0在区间[
2
,e]上有且只有一个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

先用求根公式求出方程2x2-3x-1=0的解,然后再借助计算器或计算机,用二分法求出这个方程的近似解(精确度0.1).

查看答案和解析>>

同步练习册答案