精英家教网 > 高中数学 > 题目详情
化简:
1
a(a+1)
+
1
(a+1)(a+2)
+
1
(a+2)(a+3)
+
1
(a+3)(a+4)
+
1
(a+4)(a+5)
考点:数列的求和
专题:等差数列与等比数列
分析:利用裂项求和法求解.
解答: 解:
1
a(a+1)
+
1
(a+1)(a+2)
+
1
(a+2)(a+3)
+
1
(a+3)(a+4)
+
1
(a+4)(a+5)

=
1
a
-
1
a+1
+
1
a+1
-
1
a+2
+
1
a+2
-
1
a+3
+
1
a+3
-
1
a+4
+
1
a+4
-
1
a+5

=
1
a
-
1
a+5
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=
1
n
+
n+1
,若前n项和为6,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的是(  )
A、若三条直线两两平行,则这三条直线必共面
B、互不平行的两条直线是异面直线
C、分别位于两个不同平面内的两条直线是异面直线
D、不同在任何一个平面内的两条直线是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

用min{a,b}表示a,b两个数中的最小值,设f(x)=min{x+2,10-x},则f(x)的最大值为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(2+1)+(22+2)+(23+3)+…+(2n+n)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx+b(a<0,b∈R)的最大值为5,最小值为-1,求a,b的值并求g(x)=bcos(ax)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M是AB的中点.
(1)求证:CM⊥平面FDM;
(2)求直线DM与平面ABEF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高二(6)班学生每周用于数学学习的时间x(单位:小时)与数学成绩y(单位:分)构成如下数据(15,79),(23,97),(16,64),(24,92),(12,58).求得的回归直线方程为
y
=2.5x+
a
,则某同学每周学习20小时,估计数学成绩约为多少分?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,四边形ABCD为平行四边形,面PAD⊥平面ABCD,PA=PD,Q为AD的中点,且QB⊥AD.
(Ⅰ)求证:PB⊥BC;
(Ⅱ)若点M在PC上,且
PM
MC
=
1
2
,求三棱锥C-MQB与四棱锥P-ABCD的体积之比.

查看答案和解析>>

同步练习册答案