精英家教网 > 高中数学 > 题目详情
若点P(cosα,sinα)在直线y=-2x上,则
1+cos2α
cos2α+sin2α
的值为
 
考点:同角三角函数基本关系的运用,任意角的三角函数的定义
专题:三角函数的求值
分析:将P点坐标代入直线y=-2x中,求出tanα的值,原式利用二倍角的正弦、余弦函数公式化简,再利用同角三角函数间基本关系变形,将tanα的值代入计算即可求出值.
解答: 解:∵点P(cosα,sinα)在直线y=-2x上,
∴sinα=-2cosα,即tanα=-2,
则原式=
1+2cos2α-1
cos2α+2sinαcosα
=
2cos2α
cos2α+2sinαcosα
=
2
1+2tanα
=
2
1-4
=-
2
3

故答案为:-
2
3
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
BC=
3
,沿对角线BD将△BCD折起,使点C移到P点,且P在平面ABD上的射影O恰好在AB上.

(1)求证:PB⊥PA;
(2)求点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的“l高调函数”.现给出下列命题:
①函数f(x)=log2x为(0,+∞)的“1高调函数”;
②函数f(x)=cosx为R上的“2π高调函数”;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上“m高调函数”,那么实数m的取值范围是
[2,+∞).
其中正确的命题是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=
k
3
,k∈Z},B={x|x=
k
6
,k∈Z},则集合A与B关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中已知A(2,3,5),B(3,1,4),则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log3x,x>0
9x,x<0
,则f[f(
1
3
)]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的边长4,∠ABC=150°,若在菱形内任取一 点,则该点到菱形的四个顶点的距离均大于1的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对一块边长为1的正方形进行如下操作:第一步,将它分割成3×3方格,接着用中心和四个角的5个小正方形,构成如图①所示的几何图形,其面积S1=
5
9
;第二步,将图①的5个小正方形中的每个小正方形都进行与第一步相同的操作,得到图②;依此类推,到第n步,所得图形的面积Sn=(
5
9
n.若将以上操作类比推广到棱长为1的正方体中,则
(Ⅰ)当n=1时,所得几何体的体积V1=
 

(Ⅱ)到第n步时,所得几何体的体积Vn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校一社团共有10名成员,从周一到周五每天安排两人值日,若甲、乙必须排在同一天,且丙、丁不能排在同一天,则不同的安排方案共有(  )
A、21600B、10800
C、7200D、5400

查看答案和解析>>

同步练习册答案