分析 (1)由三角形中位线定理得DE∥AC,由此能证明DE∥平面AA1C1C.
(2)推导出BC1⊥B1C,AC⊥CC1,AC⊥BC,从而AC⊥平面BCC1B1,进而AC⊥BC1,由此能证明BC1⊥AB1.
解答 证明:(1)∵在直三棱柱ABC-A1B1C1中,BC1∩B1C=E,
∴E是B1C的中点,
∵AB1的中点为D,∴DE∥AC,
∵AC?平面AA1C1C,DE?平面AA1C1C,
∴DE∥平面AA1C1C.
(2)∵在直三棱柱ABC-A1B1C1中,BC=CC1,
∴BC1⊥B1C,AC⊥CC1,又AC⊥BC,BC∩CC1=C,
∴AC⊥平面BCC1B1,∴AC⊥BC1,
∵AC∩B1C=C,∴BC1⊥平面ACB1,
∴BC1⊥AB1.
点评 本题考查线面平行的证明,考查线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 30 | C. | 40 | D. | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com