精英家教网 > 高中数学 > 题目详情
10.设复数z满足$(1+i)z=|\sqrt{3}-i|$,则z=(  )
A.1-iB.1+iC.-1+iD.-1-i

分析 利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.

解答 解:∵$(1+i)z=|\sqrt{3}-i|$,∴(1-i)$(1+i)z=|\sqrt{3}-i|$(1-i),2z=2(1-i),解得z=1-i.  
故选:A.

点评 本题考查了复数的运算法则、共轭复数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数f(x)=x2,g(x)=2elnx,则f(x)和g(x)之间的“隔离直线”的方程为$y=2\sqrt{e}x-e$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=(a-\frac{1}{2}){x^2}+lnx$.(a∈R)
(Ⅰ)当a=0时,求f(x)在区间[$\frac{1}{e}$,e]上的最大值和最小值;
(Ⅱ)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.
(Ⅲ)设g(x)=f(x)-2ax,$h(x)={x^2}-2bx+\frac{19}{6}$.当$a=\frac{2}{3}$时,若对于任意x1∈(0,2),存在x2∈[1,2],使g(x1)≤h(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线y2=4x上任一点到定直线l:x=-1的距离与它到定点F的距离相等,则该定点F的坐标为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$a=\root{3}{5},b={5^{0.3}},c=2{log_5}2$,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x3-3x2-9x+2在[-2,2]最大值是(  )
A.-25B.7C.0D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题代数题合计
25530
101020
合计351550
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
(1)能否在犯错的概率不超过0.025的前提下认为视觉和空间能力与性别有关?
(2)现从选择做几何题的10名女生中任意抽取3人对她们的答题情况进行全程研究,记甲、乙、丙三位女生被抽到的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=(1-ax)ln(1+x)-bx,其中a,b是实数.已知曲线y=f(x)与x轴相切于坐标原点.
(1)求常数b的值;
(2)当0≤x≤1时,关于x的不等式f(x)≥0恒成立,求实数a的取值范围;
(3)求证:$e>{(\frac{1001}{1000})^{1000.4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知过函数f(x)=x3+ax2+1的图象上一点B(1,b)的切线的斜率为-3.
(1)求a、b的值;
(2)求A的取值范围,使不等式f(x)≤A-1993对于x∈[-1,4]恒成立;
(3)令g(x)=-f(x)-3x2+tx+1.是否存在一个实数t,使得当x∈(0,1]时,g(x)有最大值1?

查看答案和解析>>

同步练习册答案