精英家教网 > 高中数学 > 题目详情
5.已知$a=\root{3}{5},b={5^{0.3}},c=2{log_5}2$,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

分析 利用指数函数、对数函数的单调性直接求解.

解答 解:∵$a=\root{3}{5},b={5^{0.3}},c=2{log_5}2$,
∴a=${5}^{\frac{1}{3}}$>b=50.3>50=1,
c=2log52=log54<log55=1,
∴c<b<a.
故选:A.

点评 本题考查三个数的大小的判断,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某工厂对某种产品的产量与成本的资料分析后有如表数据:
产量x(千件)2356
成本y(万元)78912
经过分析,知道产量x和成本y之间具有线性相关关系.
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y$=$\hat b$x+$\hat a$;
(2)试根据(1)求出的线性回归方程,预测产量为10千件时的成本.
参考公式:回归直线的斜率和截距的最小二乘估计公式分别为$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1,则此双曲线的离心率e为(  )
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+x2+bx(a为实常数).
(I)若a=-2,b=-3,求f(x)的单调区间;
(Ⅱ)若b=0,且a>-2e2,求函数f(x)在[1,e]上的最小值及相应的x值;
(Ⅲ)设b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若直线l过点(2,3),且与圆(x-1)2+(y+2)2=1相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设复数z满足$(1+i)z=|\sqrt{3}-i|$,则z=(  )
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于两个图形F1,F2,我们将图形F1上的任意一点与图形F2上的任意一点间的距离中的最小值,叫作图形F1与图形F2的距离.若两个函数图象的距离小于1,称这两个函数互为“可及函数”.给出下列几对函数,其中互为“可及函数”的是(  )
A.f(x)=cosx,g(x)=2B.$f(x)={log_2}({{x^2}-2x+5}),g(x)=sin\frac{π}{2}x$
C.$f(x)=\sqrt{4-{x^2}},g(x)=\frac{3}{4}x+\frac{15}{4}$D.$f(x)=x+\frac{2}{x},g(x)=lnx+2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合$M=\{y|y={x^{\frac{1}{2}}},1≤x≤9\}$,N={x|y=log2(2-x)},则图中阴影部分表示的集合为(  )
A.{x|2≤x≤3}B.{x|1≤x≤2}C.$\{x|1≤x≤\sqrt{3}\}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-x-2(e为自然对数的底数).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若k为正整数,且当x>0时,$\frac{1}{f'(x)}+1>\frac{k}{x+1}$,求k的最大值.

查看答案和解析>>

同步练习册答案