精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ax2+bx-lnx(a>0,b∈R),若对任意x>0,f(x)≥f(1),则(  )
A.lna<-2bB.lna≤-2bC.lna>-2bD.lna≥-2b

分析 由f(x)≥f(1),知x=1是函数f(x)的极值点,所以f′(1)=0,从而得到b=1-2a,-2b=-(2-4a),作差:lna-(-2b)=lna+2-4a,所以构造函数g(x)=lnx+2-4x,通过导数可求得g(x)≤g($\frac{1}{4}$)<0,即g(x)<0,所以g(a)<0,所以lna<-(2-4a)=-2b,即lna<-2b.

解答 解:f′(x)=2ax+b-$\frac{1}{x}$,
由题意可知,f(x)在x=1处取得最小值,即x=1是f(x)的极值点;
∴f′(1)=0,∴2a+b=1,即b=1-2a;
令g(x)=2-4x+lnx(x>0),则g′(x)=$\frac{1-4x}{x}$;
∴当0<x<$\frac{1}{4}$时,g′(x)>0,g(x)在(0,$\frac{1}{4}$)上单调递增;
当x>$\frac{1}{4}$时,g′(x)<0,g(x)在($\frac{1}{4}$,+∞)上单调递减;
∴g(x)≤g($\frac{1}{4}$)=1+ln$\frac{1}{4}$=1-ln4<0;
∴g(a)<0,即2-4a+lna=2b+lna<0;
故lna<-2b,
故选:A.

点评 考查最值的概念,极值的定义,函数导数符号和函数单调性的关系,通过构造函数比较两个式子大小的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知直线l过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点F,与椭圆相交于A,B两点,且满足$\frac{|AF|}{|BF|}$=2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{2π}{3}$,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.-$\frac{3\sqrt{3}}{2}$B.-$\frac{2\sqrt{3}}{2}$C.$\frac{2\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设定义在(0,+∞)上的单调函数f(x)对任意的x∈(0,+∞)都有f(f(x)-log3x)=4,则不等式f(a2+2a)>4的解集为(  )
A.{a|a<-3或a>1}B.{a|a>1}C.{a|-3<x<1}D.{a|a<-3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式组$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-2≥0\\ x-y+2m≥0\end{array}\right.$表示的平面区域为三角形,且其面积等于$\frac{4}{3}$,则m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),而用横轴来表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P1低于均衡价格P0时,需求量大于供应量,价格会上升为P2;当产品价格P2高于均衡价格P0时,供应量大于需求量,价格又会下降,价格如此波动下去,产品价格将会逐渐靠进均衡价格P0.能正确表示上述供求关系的图形是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知M为△ABC所在平面内的一点,且$\overrightarrow{AM}=\frac{1}{4}\overrightarrow{AB}+n\overrightarrow{AC}$.若点M在△ABC的内部(不含边界),则实数n的取值范围是(0,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,矩形ABCD中,AB=3,AD=4,M、N分别为线段BC、CD上的点,且满足$\frac{1}{C{M}^{2}}$$+\frac{1}{C{N}^{2}}$=1,若$\overrightarrow{AC}$=x$\overrightarrow{AM}$+y$\overrightarrow{AN}$,则x+y的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x2+ax+3.
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围;
(2)当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范囤;
(3)设不等式f(x)≥a对于满足1≤a≤3的一切a的取值都成立,求x的取值范围.

查看答案和解析>>

同步练习册答案