精英家教网 > 高中数学 > 题目详情
10.已知⊙C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0.
(1)求证:直线l与⊙C恒有两个交点;
(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.

分析 (1)求出圆C的圆心和半径,整理直线方程为m(2x+y-7)+(x+y-4)=0,求出直线2x+y-7=0,x+y-4=0的交点,判断它在圆内,即可得证;
(2)由题意知,设点P(x,y)为弦AB的中点,连接CP,则CP⊥PQ,由平面几何知识可得点P的轨迹方程是以CQ为直径的圆,求得圆心和半径,注意运用中点坐标公式,再由当Q(3,1)是弦AB的中点时,|AB|最小,运用勾股定理即可得到所求值.

解答 解:(1)证明:⊙C:x2+y2-2x-4y-20=0,
即(x-1)2+(y-2)2=25,圆心C(1,2),半径r=5,
又直线l:(2m+1)x+(m+1)y-7m-4=0,
化为m(2x+y-7)+(x+y-4)=0,
由$\left\{\begin{array}{l}{2x+y-7=0}\\{x+y-4=0}\end{array}\right.$解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,
则直线l恒过定点Q(3,1),
由|CQ|=$\sqrt{(3-1)^{2}+(1-2)^{2}}$=$\sqrt{5}$<5,
可得Q在圆C内,则直线l与⊙C恒有两个交点;
(2)由题意知,设点P(x,y)为弦AB的中点,
由(1)可知CP⊥PQ,
点P的轨迹方程是以CQ为直径的圆,
线段CQ的中点为(2,$\frac{3}{2}$),|CQ|=$\sqrt{5}$,
则线段AB中点P的轨迹方程为${(x-2)^2}+{(y-\frac{3}{2})^2}=\frac{5}{4}$;
由圆的几何性质可知,当Q(3,1)是弦AB的中点时,|AB|最小.
弦心距$d=|{CQ}|=\sqrt{5}$,⊙C的半径为5,
可得|AB|min=2$\sqrt{{5}^{2}-(\sqrt{5})^{2}}$=4$\sqrt{5}$.

点评 本题考查直线和圆的位置关系的证明,注意运用直线恒过定点,考查线段中点的轨迹方程,注意运用几何法,考查弦长的最小值,注意运用弦长公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知圆的方程为(x-1)2+(y-1)2=1,P点坐标为(2,3),
求:(1)过P点的圆的切线长.
(2)过P点的圆的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知方程$\frac{x^2}{m-1}+\frac{y^2}{4-m}=1$表示焦点在x轴上的双曲线的一个充分不必要条件是(  )
A.(4,+∞)B.(5,+∞)C.$(1,\frac{5}{2})$D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,-1),且离心率为$\frac{\sqrt{2}}{2}$,求椭圆E的方程;
(2)求经过M(2,$\sqrt{2}$),N($\sqrt{6}$,1)两点的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知两点A(1,2).B(2,1)在直线mx-y+1=0的异侧,则实数m的取值范围为(  )
A.(-∞,0)B.(1,+∞)C.(0,1)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)过点M(m,0)(m>0)任作一条直线与曲线C交于A,B两点,点N(n,0),连接AN,BN,且m+n=0.求证:∠ANM=∠BNM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了考察某种药物预防禽流感的效果,某研究中心选了50只鸭子做实验,统计结果如下:
得禽流感不得禽流感总计
服药52025
不服药151025
总计203050
(1)能有多大的把握认为药物有效?
(2)在服药后得禽流感的鸭子中,有2只母鸭,3只公鸭,在这5只中随机抽取3只再进行研究,求至少抽到1只母鸭的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
临界值表:
 P(K2≥k0 0.10 0.05 0.01
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆${x^2}+\frac{y^2}{4}=1$和点$A({\frac{1}{2},\frac{1}{2}})$、$B({\frac{1}{2},1})$,若椭圆的某弦的中点在线段AB上,且此弦所在直线的斜率为k,则k的取值范围为(  )
A.[-4,-2]B.[-2,-1]C.[-4,-1]D.$[{-1,-\frac{1}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+k(x-1)2,k∈R与函数g(x)=x-1
(1)当k=$\frac{1}{2}$,x∈(1,+∞)时,求证:f(x)>g(x)恒成立
(2)当f(x)>g(x)在x∈(1,+∞)上恒成立时,求实数k的取值范围.

查看答案和解析>>

同步练习册答案