精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xlnx.
(l)求f(x)的单调区间和极值;
(2)若对任意x∈(0,+∞),f(x)≥
-x2+mx-3
2
恒成立,求实数m的最大值.
考点:利用导数研究函数的单调性,函数恒成立问题
专题:导数的综合应用
分析:(l)求函数的导数,利用函数单调性和极值之间的关系即可求f(x)的单调区间和极值;
(2)利用不等式恒成立,进行参数分离,利用导数即可求出实数m的最大值.
解答: 解 (1)∵f(x)=xlnx,
∴f'(x)=lnx+1,
∴f'(x)>0有 x>
1
e
,∴函数f(x)在(
1
e
,+∞)
上递增,f'(x)<0有 0<x<
1
e

∴函数f(x)在(0,
1
e
)
上递减,
∴f(x)在x=
1
e
处取得极小值,极小值为f(
1
e
)=-
1
e

(2)∵2f(x)≥-x2+mx-3
即mx≤2x•lnx+x2+3,又x>0,
m≤
2x•lnx+x2+3
x

h(x)=
2x•lnx+x2+3
x

h′(x)=
(2x•lnx+x2+3)′•x-(2x•lnx+x2+3)•x′
x2
=
2x+x2-3
x2

令h'(x)=0,解得x=1或x=-3(舍)
当x∈(0,1)时,h'(x)<0,函数h(x)在(0,1)上递减
当x∈(1,+∞)时,h'(x)>0,函数h(x)在(1,+∞)上递增,
∴h(x)min=h(1)=4.
∴a≤4,
即m的最大值为4.
点评:本题主要考查函数单调性和极值的求解,利用函数单调性,极值和导数之间的关系是解决本题的关键.将不等式恒成立转化为求函数的最值是解决不等式恒成立问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(0,+∞)上的可导函数f(x)满足:xf′(x)<f(x)且f(2)=0,则f(x)<0的解集为(  )
A、(0,2)
B、(0,2)∪(2,+∞)
C、(2,+∞)
D、ϕ

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为递增等差数列,Sn为其前n项和,满足a1a3-a5=S10,S11=33.
(1)求数列{an}的通项公式an及前n项和Sn
(2)试求所有的正整数m,使
am+1am+3
am+2
为数列{an}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)若a2,a3分别为等差数列{bn}的第2项和第4项,试求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A、B、C所对的边分别为a,b,c,a=7,b=3,c=5.
(1)求△ABC中的最大角;
(2)求角C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-a.
(Ⅰ)求函数f(x)的单调增区间.
(Ⅱ)对任意a≤-3,使得f(1)是函数f(x)在区间[1,b](b>1)上的最大值,试求最大的实数b.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面为菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,点F在PD上,且PE:ED=2:1
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的正弦值;
(Ⅲ)在棱PC上是否存在一点F,使得BF∥平面EAC?若存在,试求出PF的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出定义域为{x|-3≤x≤8,且x≠5},值域为{y|-1≤y≤2,y≠0}的一个函数的图象.如果平面直角坐标系中点P(x,y)的坐标满足-3≤x≤8,-1≤y≤2,那么其中哪些点不能在图象上?

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成的角为60°.
(1)求正四棱锥P-ABCD的表面积S和体积V.
(2)求二面角P-BC-A的余弦值.

查看答案和解析>>

同步练习册答案