精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.
(1)求M;
(2)已知a∈M,比较a2﹣a+1与 的大小.

【答案】
(1)解:f(x)=|x|﹣|2x﹣1|= ,由f(x)>﹣1,可得:

解得0<x<2,∴M=(0,2).


(2)解:由(1)知:0<a<2,∵a2﹣a+1﹣ = =g(a).

当0<a<1时,g(a)<0,∴a2﹣a+1<

当a=1时,g(a)=0,∴a2﹣a+1=

当1<a<2时,g(a)>0,∴a2﹣a+1>

综上所述:当0<a<1时,∴a2﹣a+1<

当a=1时,a2﹣a+1=

当1<a<2时,a2﹣a+1>


【解析】(1)f(x)=|x|﹣|2x﹣1|= ,由f(x,由f(x)>﹣1,可得: ,解出即可得出.(2)由(1)知:0<a<2,可得:a2﹣a+1﹣ = =g(a).对a分类讨论:当0<a<1时,当a=1时,当1<a<2时,即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数) (Ⅰ)当a=4时,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|,g(x)=﹣|x﹣4|+m.
(1)解关于x的不等式g[f(x)]+3﹣m>0;
(2)若函数f(x)的图象恒在函数g(2x)图象的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB的中点M到原点的距离的最小值为( )
A.3
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.

(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED= ,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与过点M(- ),N( ,- )的直线垂直,则直线l的倾斜角是( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据要求,解答下列问题。
(1)求经过点A(3,2),B(-2,0)的直线方程;
(2)求过点P(-1,3),并且在两轴上的截距相等的直线方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的倾斜角 的余弦值 ,则此直线的斜率是( ).
A.
B.-
C.
D.±

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP= ,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=

查看答案和解析>>

同步练习册答案