如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=.
(1)求直线D1B与平面ABCD所成角的大小;
(2)求证:AC⊥平面BB1D1D.
(1)45º;(2)利用线线垂直证明线面垂直
解析试题分析:(1)因为D1D⊥面ABCD,所以BD为直线B D1在平面ABCD内的射影,
所以∠D1BD为直线D1B与平面ABCD所成的角, 2分
又因为AB=1,所以BD=,在Rt△D1DB中,,
所以∠D1BD=45º,所以直线D1B与平面ABCD所成的角为45º; 4分
(2)明:因为D1D⊥面ABCD,AC在平面ABCD内,所以D1D⊥AC,
又底面ABCD为正方形,所以AC⊥BD, 6分
因为BD与D1D是平面BB1D1D内的两条相交直线,
所以AC⊥平面BB1D1D. 8分
考点:本题考查了空间中的线面关系
点评:此类问题常考查空间中平行关系与垂直关系的证明以及空间角、几何体体积的计算,这是立体几何的重点内容.证明的关键是熟练掌握并灵活运用相关的判定定理与性质定理
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,面为正方形,面为等腰梯形,,,,.
(1)求证:;
(2)求三棱锥的体积;
(3)线段上是否存在点,使//平面?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。
(I)求证:BF⊥平面DAF;
(II)求ABCD与平面CDEF所成锐二面角的某三角函数值;
(III)求多面体ABCDFE的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,为圆的直径,点、在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com