如图,在四棱锥
中,侧棱
底面
,底面
为矩形,
,
为
的上一点,且
,
为PC的中点.![]()
![]()
(Ⅰ)求证:
平面AEC;
(Ⅱ)求二面角
的余弦值.
科目:高中数学 来源: 题型:解答题
如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=
.![]()
(1)求直线D1B与平面ABCD所成角的大小;
(2)求证:AC⊥平面BB1D1D.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:
; (2)求证:![]()
;
(3)设
为
中点,在
边上找一点
,使![]()
平面
,并求
的值.![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE
折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为
,在直线DE上是否存在一点
,使得
∥面BCD?若存在,请指出点
的位置,并证明你的结论;若不存在,请说明理由;
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.![]()
(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角
,如图二,在二面角
中.![]()
(1) 求D、C之间的距离;
(2) 求CD与面ABC所成的角的大小;
(3) 求证:对于AD上任意点H,CH不与面ABD垂直。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共13分)
如图所示,正方形
与矩形
所在平面互相垂直,
,点E为
的中点。![]()
(Ⅰ)求证:
(Ⅱ) 求证:![]()
(Ⅲ)在线段AB上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥
中,底面
是边长为2的正方形,
,且
,
为
中点.![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)在线段
上是否存在点
,使得点
到平
面
的距离为
?若存在,确定点
的位置;
若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com