如图,四棱锥
中,底面
是边长为2的正方形,
,且
,
为
中点.![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)在线段
上是否存在点
,使得点
到平
面
的距离为
?若存在,确定点
的位置;
若不存在,请说明理由.
解法一:
(Ⅰ)证明:∵底面
为正方形,
∴
,又
,
∴
平面
,
∴
. 2分
同理
, 4分
∴
平面
.
5分
(Ⅱ)解:设
为
中点,连结
,
又
为
中点,
可得
,从而
底面
.
过
作
的垂线
,垂足为
,连结
.
由三垂线定理有
,
∴
为二面角
的平面角. 7分
在
中,可求得
∴
. 9分
∴ 二面角
的大小为
. 10分
(Ⅲ)解:由
为
中点可知,
要使得点
到平面
的距离为
,
即要点
到平面
的距离为
.
过
作
的垂线
,垂足为
,![]()
∵
平面
,
∴平面
平面
,
∴
平面
,
即
为点
到平面
的距离.
∴
,
∴
. 12分
设解析试题分析:解法一:
(Ⅰ)证明:∵底面
为正方形,
∴
,又
,
∴
平面
,
∴
. 2分
同理
, 4分
∴
平面
.
5分
(Ⅱ)解:设
为
中点,连结
,
又
为
中点,
可得
,从而
底面
.
过
作
的垂线
,垂足为
,连结
.
由三垂线定理有
,
∴
为二面角
的平面角. 7分
在
中,可求得
∴
. 9分
∴ 二面角
的大小为
. 10分
(Ⅲ)解:由
为
中点可知,
要使得点
到平面
的距离为
,
即要点
到平面
的距离为
.
过
作
的垂线
,垂足为
,![]()
∵
平面
,
∴平面
平面
,
∴
平面
,
即
为点
到平面
的距离.
∴
,
∴
. 12分
设![]()
科目:高中数学 来源: 题型:解答题
在长方体
中,
,
,
为
中点.(Ⅰ)证明:
;(Ⅱ)求
与平面
所成角的正弦值;(Ⅲ)在棱
上是否存在一点
,使得
∥平面
?若存在,求
的长;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,
ABC=60。,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.![]()
(1)求证:BC⊥平面ACFE;
(2)若M为线段EF的中点,设平面MAB与平面FCB所成角为
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com