精英家教网 > 高中数学 > 题目详情

在长方体中,中点.(Ⅰ)证明:;(Ⅱ)求与平面所成角的正弦值;(Ⅲ)在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.

(Ⅰ)先证平面(Ⅱ)(Ⅲ)的长.

解析试题分析:(Ⅰ)证明:连接是长方体,∴平面,又平面 ∴    
在长方形中, ∴     
平面,    
平面      
(Ⅱ)如图建立空间直角坐标系,则

,  
设平面的法向量为,则    令,则  ,
       
所以 与平面所成角的正弦值为                
(Ⅲ)假设在棱上存在一点,使得∥平面.
的坐标为,则 因为 ∥平面
所以 ,即, ,解得,        
所以 在棱上存在一点,使得∥平面,此时的长
考点:直线与平面垂直的判定;直线与平面所成的角.
点评:本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在矩形ABCD中,已知AB=3, AD=1, E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:

(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G ⊥D F。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为正方形的中心,四边形是平行四边形,且平面平面,若.

(1)求证:平面.
(2)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,底面,点的中点.

(1)求证:侧面平面
(2)若异面直线所成的角为,且
求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是平行四边形,M、N分别是AB、PC的中点,且.证明:平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,中,侧棱与底面垂直,,,点分别为的中点.

(1)证明:;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:; (2)求证:
(3)设中点,在边上找一点,使平面,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥的底面为等腰梯形,,,垂足为是四棱锥的高。

(Ⅰ)证明:平面 平面
(Ⅱ)若,60°,求四棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是边长为2的正方形,,且中点.

(Ⅰ)求证:平面;    
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在点,使得点到平
的距离为?若存在,确定点的位置;
若不存在,请说明理由.

查看答案和解析>>

同步练习册答案