已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:; (2)求证:
;
(3)设为
中点,在
边上找一点
,使
平面
,并求
的值.
(1)根据三视图还原几何体,并能结合向量的知识建立空间直角坐标系,借助于法向量来得到证明。
(2)对于线面的垂直的证明,一般通过线线垂直的证明来得到线面垂直。
(3)
解析试题分析:解:(1)证明:该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,
两两互相垂直。以
分别为
轴建立空间直角坐标系,则
,
,
2分
∵,
,
,∴
∵,
,
∴ 4分
(2),
,又
8分
(3)设为
上一点,
为
的中点,
,
,
设平面的一个法向量为,则有
,则有
∴,得
,
∴,…10分
//平面
,
,于是
解得: 12分
平面
,
//平面
,此时
,
14分
(注:此题用几何法参照酌情给分)
考点:空间中点线面的位置关系
点评:主要是考查了空间中的线面的平行和垂直的证明,熟练的掌握判定定理和性质定理是结题的关键,属于基础题。
科目:高中数学 来源: 题型:解答题
在长方体中,
,
,
为
中点.(Ⅰ)证明:
;(Ⅱ)求
与平面
所成角的正弦值;(Ⅲ)在棱
上是否存在一点
,使得
∥平面
?若存在,求
的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,ABC=60。,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)若M为线段EF的中点,设平面MAB与平面FCB所成角为,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,
(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD ,AB=1,SB=.
(1)求证:BCSC;
(2) 设M为棱SA中点,求异面直线DM与SB所成角的大小
(3) 求面ASD与面BSC所成二面角的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形中,
为正三角形,
,
,
与
交于
点.将
沿边
折起,使
点至
点,已知
与平面
所成的角为
,且
点在平面
内的射影落在
内.
(Ⅰ)求证:平面
;
(Ⅱ)若已知二面角的余弦值为
,求
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示在四棱锥P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是边长为2的正方形,△PAB为等边三角形。(12分)
(1)求PC和平面ABCD所成角的大小;
(2)求二面角B─AC─P的大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com