精英家教网 > 高中数学 > 题目详情

如图,正方体棱长为1,的中点,的中点.

(1)求证:
(2)求二面角的余弦值.

(1)建立空间直角坐标系来表示平面的法向量于直线的方向向量,来根据垂直关系来得到证明。(2)

解析试题分析:(1)证明:以D为坐标原点,直线DA,DC,分别为x, y, z轴,
建立空间直角坐标系,                           
,A(1,0,0), (1,0,1),(0,0,1),
E(1,1,),F(,1,1),
,,,       
设平面的法向量为

从而                          

所以                  
(2)解:设平面ADE的法向量为
从而  
由(1)知的法向量为

二面角的余弦值为.                      
考点:线面垂直以及二面角的平面角
点评:解决的关键是能够合理的建立空间直角坐标系,然后借助于平面的法向量以及直线的方向向量来得到垂直的证明,以及二面角的平面角的求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题


AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求证:BF⊥平面DAF;
(II)求ABCD与平面CDEF所成锐二面角的某三角函数值;
(III)求多面体ABCDFE的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,棱柱ABCD—的底面为菱 形 ,AC∩BD=O侧棱BD,F的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为1的正方体中.

⑴求异面直线所成的角;
⑵求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,ABC=60。,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.

(1)求证:BC⊥平面ACFE;  
(2)若M为线段EF的中点,设平面MAB与平面FCB所成角为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,的上一点,且为PC的中点.

(Ⅰ)求证:平面AEC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.

(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,四边形是菱形,,的中点.

(1)求证:;  (2)求证:平面平面.

查看答案和解析>>

同步练习册答案