如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.![]()
(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.
(1)
(2)![]()
解析试题分析:解法一:(1)取BC中点H,连结FH,EH,设正方体棱长为2.
∵F为BCC1B1中心,E为AB中点.
∴FH⊥平面ABCD,FH=1,EH=
.
∴∠FEH为直线EF与平面ABCD所成角,且FH⊥EH.
∴tan∠FEH=
=
=
.……6分
(2)取A1C中点O,连接OF,OA,则OF∥AE,且OF=AE.
∴四边形AEFO为平行四边形.∴AO∥EF.
∴∠AOA1为异面直线A1C与EF所成角.
∵A1A=2,AO=A1O=
.
∴△AOA1中,由余弦定理得cos∠A1OA=
.……12分
解法二:设正方体棱长为2,以B为原点,BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系.则B(0,0,0),B1(0,0,2),E(0,1,0),F(1,0,1),
C(2,0,0),A1(0,2,2).
(1)
=(1,-1,1),
=(0,0,2),且
为平面ABCD的法向量.
∴cos<
,
>=
.
设直线EF与平面ABCD所成角大小为θ.
∴sinθ=
,从而tanθ=
.……6分
(2)∵
=(2,-2,-2).∴cos<
,
>=
.
∴异面直线A1C与EF所成角的余弦值为
.……12分
考点:异面直线所成的角,线面角
点评:解决的关键是根据异面直线所成角的定义, 以及线面角的概念,结合向量法来得到,属于基础题。
科目:高中数学 来源: 题型:解答题
如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCDE,F为线段A′D的中点.![]()
![]()
(1)求证:EF//平面A′BC;
(2)求直线A′B与平面A′DE所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE
折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为
,在直线DE上是否存在一点
,使得
∥面BCD?若存在,请指出点
的位置,并证明你的结论;若不存在,请说明理由;
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.![]()
(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD
平面ABCD,EF∥AB, AB=2EF=2AD=4,
.![]()
(Ⅰ)求证:BF
AD;
(Ⅱ)求直线BD与平面BCF所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角
,如图二,在二面角
中.![]()
(1) 求D、C之间的距离;
(2) 求CD与面ABC所成的角的大小;
(3) 求证:对于AD上任意点H,CH不与面ABD垂直。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com