精英家教网 > 高中数学 > 题目详情
8.在多面体ABCDEFG中,四边形ABCD与CDEF是边长均为a的正方形,CF⊥平面ABCD,BG⊥平面ABCD,H是BC上一点,且AB=2BG=4BH 
(1)求证:平面AGH⊥平面EFG
(2)若a=4,求三棱锥G-ADE的体积.

分析 (1)利用勾股定理逆定理证明GH⊥FG,根据CD⊥平面BCFG,CD∥EF得EF⊥GH,故而GH⊥平面EFG,于是平面AGH⊥平面EFG;
(2)根据GB∥CF∥DE得出BG∥平面ADE,故VG-ADE=VB-ADE=VE-ABD=VF-ABD

解答 证明:(1)连接FH,
∵CD⊥BC,CD⊥CF,
∴CD⊥平面BCFG. 又∵GH?平面BCFG,
∴CD⊥GH. 又∵EF∥CD,
∴EF⊥GH,
∵AB=2BG=4BH=a,
∴GH=$\sqrt{B{G}^{2}+B{H}^{2}}$=$\frac{\sqrt{5}a}{4}$,FH=$\sqrt{F{C}^{2}+H{C}^{2}}$=$\frac{5a}{4}$,GF=$\sqrt{{a}^{2}+\frac{{a}^{2}}{4}}$=$\frac{\sqrt{5}a}{2}$,
∴FH2=FG2+GH2
∴GH⊥FG.
又∵EF∩FG=F,EF?平面EFG,FG?平面EFG,
∴GH⊥平面EFG.又GH?平面AGH,
∴平面AGH⊥平面EFG.
解:(2)∵CF⊥平面ABCD,BG⊥平面ABCD,
∴CF∥BG,又∵ED∥CF,
∴BG∥ED,又BG?平面ADE,DE?平面ADE,
∴BG∥平面ADE,
∴VG-ADE=VB-ADE=VE-ABD=VF-ABD=$\frac{1}{3}$S△ABD•CF=$\frac{1}{3}×\frac{1}{2}×{4}^{2}×4$=$\frac{32}{3}$.

点评 本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
可用公式:$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n(\overline x{)^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{({x_i}-\overline x{)^2}}}}$,$\widehat{a}$=$\overline y$-$\widehat{b}$$\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个三角形的三个内角A,B,C成等差数列,则cosB=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足(3-4i)z=|4+3i|,则$\overline{z}$的虚部为(  )
A.$-\frac{4}{5}i$B.$-\frac{4}{5}$C.$\frac{4}{5}$D.$\frac{4}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x3+3ax2-9x+5,若f(x)在x=1处有极值.
(1)求实数a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=1-x2.设g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-5,10]内零点的个数为(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知在等比数列{an}中,a5,a95为方程x2-10x+16=0的两根,则a5a20a80+a10a90a95=160.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y∈R,集合A={(x,y)|x2+(y-1)2=1},B={(x,y)|(x-1)2+y2=1},则A∩B的元素个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x>3,则当函数$f(x)=x+\frac{4}{x-3}$取得最小值时,x=5.

查看答案和解析>>

同步练习册答案