精英家教网 > 高中数学 > 题目详情
13.如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=$\sqrt{6}$,四边形ABCD是边长为2的菱形,∠ABC=60°,M,N分别为BC和PB的中点.
(Ⅰ)求证:平面PBC⊥平面PMA;
(Ⅱ)求点B到平面AND的距离.

分析 (Ⅰ)连结AC,由题意和面面垂直的判定定理可得;
(Ⅱ)取AB中点E,连结NE,由VN-ABD=VB-AND和三棱锥的体积公式可得距离d的方程,解方程可得.

解答 解:(Ⅰ)证明:连结AC,
∵四边形ABCD是菱形,∴AB=BC
又∵∠ABC=60°,∴△ABC是等边三角形,
∵M是BC中点,∴AM⊥BC,
∵PA⊥平面ABCD,BC?平面ABCD,
∴PA⊥BC,在平面PMA中AM∩PA=A,∴BC⊥平面PMA
∴平面PBC⊥平面PMA;
(Ⅱ)取AB中点E,连结NE,则NE∥PA,∴NE⊥平面ABCD,$NE=\frac{1}{2}PA=\frac{{\sqrt{6}}}{2}$,
过点E作AD的垂线,交DA延长线于点F,连结NF,易知NF⊥DA,
在Rt△EFA中,AE=1,∠EAF=60°,∴$EF=\frac{{\sqrt{3}}}{2}$
在Rt△NEF中,$NE=\frac{{\sqrt{6}}}{2},EF=\frac{{\sqrt{3}}}{2},∠NEF=90°$,∴$NF=\frac{3}{2}$
∴${S_{△AND}}=\frac{1}{2}AD•NF=\frac{1}{2}•2•\frac{3}{2}=\frac{3}{2}$,${S_{△ABD}}=\frac{1}{2}AB•ADsin∠BAD=\sqrt{3}$
设点B到平面AND的距离为d,由VN-ABD=VB-AND
得$\frac{1}{3}•NE•{S_{△ABD}}=\frac{1}{3}•d•{S_{△AND}}$,即$\frac{{\sqrt{6}}}{2}•\sqrt{3}=d•\frac{3}{2}$,∴$d=\sqrt{2}$
∴点B到平面AND的距离为$\sqrt{2}$

点评 本题考查立体几何的综合问题,涉及平行和垂直关系以及空间距离的求解,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆的中心在原点,焦点在x轴上,长轴长为4$\sqrt{2}$,离心率为$\frac{\sqrt{6}}{4}$.
(1)求椭圆的标准方程;
(2)直线l与该椭圆交于M,N两点,MN的中点为A(2,-1),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB是圆O的直径,点C在圆O上,矩形DCBE所在的平面垂直于圆O所在的平面,AB=4,BE=1.
(1)证明:平面ADE⊥平面ACD;
(2)当三棱锥C-ADE的体积最大时,求点C到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中xOy中,动点E到定点(1,0)的距离与它到直线x=-1的距离相等.
(Ⅰ)求动点E的轨迹C的方程;
(Ⅱ)设动直线l:y=kx+b与曲线C相切于点P,与直线x=-1相交于点Q.证明:以PQ为直径的圆恒过x轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(1)求证:PC⊥AD; 
(2)求点D到平面PAM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,已知抛物线x2=8y被直线y=4分成两个区域W1,W2(包括边界),圆C:x2+(y-m)2=r2(m>0).
(1)若m=3,则圆心C到抛物线上任意一点距离的最小值是3;
(2)若圆C位于W2内(包括边界)且与三侧边界均有公共点,则圆C的半径是4+4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线y=x+m与圆x2+y2=16交于不同的两点M,N,$|{\overrightarrow{MN}}|≤\sqrt{3}|{\overrightarrow{OM}+\overrightarrow{ON}}|$其中O是坐标原点,则实数m的取值范围是(-4$\sqrt{2}$,-2$\sqrt{2}$]∪[2$\sqrt{2}$,4$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在△ABC中,BC=2,AC=$\sqrt{2}$,AB=$\sqrt{3}+1$.
(1)求$\overrightarrow{AB}•\overrightarrow{AC}$;
(2)设△ABC的外心为O,若$\overrightarrow{AC}$=m$\overrightarrow{AO}$+n$\overrightarrow{AB}$,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是BC、A1D1的中点,求AD和平面B1EDF所成角的正弦值.

查看答案和解析>>

同步练习册答案