精英家教网 > 高中数学 > 题目详情

如图所示,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC,

 AE= AB,BD,CE相交于点F.

(1)求证:A,E,F,D四点共圆;

(2)若正△ABC的边长为2,求A,E,F,D所在圆的半径.


 (1)证明:∵AE=AB,∴BE=AB.

又∵AD=AC,AB=AC,∴AD=BE.

又∵AB=BC,∠BAD=∠CBE,

∴△BAD≌△CBE,∴∠ADB=∠BEC,

∴∠ADF+∠AEF=π,

∴A,E,F,D四点共圆.

 (2)解:如图所示,取AE的中点G,连接GD,则AG=GE=AE.

∵AE=AB,∴AG=GE=AB=.

∵AD=AC=,∠DAE=60°,

∴△AGD为正三角形,

∴GD=AG=AD=,即GA=GE=GD=,

所以点G是△AED外接圆的圆心,且圆G的半径为.

由于A,E,F,D四点共圆,即A,E,F,D四点共圆G,其半径为.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


设a,b为正实数.现有下列命题:

①若a2-b2=1,则a-b<1;②若-=1,则a-b<1;

③若|-|=1,则|a-b|<1;④若|a3-b3|=1,则|a-b|<1.

其中的真命题有    .(写出所有真命题的编号) 

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF·DB=   . 

查看答案和解析>>

科目:高中数学 来源: 题型:


如图所示,AB是半径等于3的☉O的直径,CD是☉O的弦,BA,DC的延长线交于点P,若PA=4,PC=5,则∠CBD=    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.

(1)证明:B,D,H,E四点共圆;

(2)证明:CE平分∠DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:


如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,那么(  )

(A)△A1B1C1和△A2B2C2都是锐角三角形

(B)△A1B1C1和△A2B2C2都是钝角三角形

(C)△A1B1C1是钝角三角形,△A2B2C2是锐角三角形

(D)△A1B1C1是锐角三角形,△A2B2C2是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:


设函数f(θ)=sin θ+cos θ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.

(1)若点P的坐标为(,),求f(θ)的值;

(2)若点P(x,y)为平面区域Ω: 上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:


双曲线-=1的两条渐近线的方程为    . 

查看答案和解析>>

同步练习册答案